Skip to main content
Log in

Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al-Cu alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Al(100−x)-Cux alloys (x=3 wt%, 6 wt%, 15 wt%, 24 wt% and 33 wt%) were prepared using metals of 99.99% high purity in vacuum atmosphere. These alloys were directionally solidified under steady-state conditions by using a Bridgman-type directional solidification furnace. Solidification parameters (G, V and ), microstructure parameters (λ1, λ2 and λE) and mechanical properties (HV, σ) of the Al-Cu alloys were measured. Microstructure parameters were expressed as functions of solidification parameters by using a linear regression analysis. The dependency of HV, σ on the cooling rate, microstructure parameters and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples was increased by increasing the cooling rate and Cu content, but decreased with increasing microstructure parameters. The microscopic fracture surfaces of the different samples were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces showed that the type of fracture significantly changed from ductile to brittle depending on the composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. J. Lavernia and N. J. Grant, J. Mater. Sci. 22, 1521 (1987).

    Article  CAS  Google Scholar 

  2. H. A. H. Steen and A. Hellawell, Acta Metall. 20, 363 (1972).

    Article  CAS  Google Scholar 

  3. F. Yang, L. Peng, and K. Okazaki, Metall. Mater. Trans. A 35, 3323 (2004).

    Article  Google Scholar 

  4. M. Goǧebakan, O. Uzun, T. Karaaslan and M. Keskin, J. Mat. Process. Tech. 142, 87 (2003).

    Article  Google Scholar 

  5. E. Karaköse, T. Karaaslan, M. Keskin and O. Uzun, J. Mat. Process. Tech. 195, 58 (2008).

    Article  Google Scholar 

  6. R. Trivedi and W. Kurz, Int. Mater. Rev. 39, 49 (1994).

    Article  CAS  Google Scholar 

  7. H. Kaya, M. Gündüz, E. Çadırlı, and O. Uzun, J. Mater. Sci. 39, 6571 (2004).

    Article  CAS  Google Scholar 

  8. H. Kaya, E. Çadırlı, M. Gündüz, and A. Ülgen, J. Mater. Eng. Perform. 12, 544 (2003).

    Article  CAS  Google Scholar 

  9. N. Fatahalla, M. Hafýz, and M. Abdulkhalek, J. Mater. Sci. 34, 3555 (1999).

    Article  Google Scholar 

  10. X. L. Liu, M. Nagumo, and M. Umemoto, Mater. Trans. JIM 38, 1033 (1997).

    CAS  Google Scholar 

  11. F. Y lmaz and R. Elliott, J. Mater. Sci. 24, 2065 (1989).

    Article  Google Scholar 

  12. S.E. Kısakürek, Proceedings of the Conference 53rd World Foundry Congress, Prague, Czechoslovakia (1986).

    Google Scholar 

  13. A. I. Telli and S. E. Kısakürek, Mater. Sci. Tech. 4, 153 (1988).

    Article  CAS  Google Scholar 

  14. F. Yılmaz, Mater. Sci. Eng. A 124, L1 (1990).

    Article  Google Scholar 

  15. S. Khan, A. Ourdjini, Q. S. Hamed, M. A. A. Najafabadi, and R. Elliott, J. Mater. Sci. 28, 5957 (1993).

    Article  CAS  Google Scholar 

  16. F. Vnuk, M. Sahoo, D. Baragor, and R. W. Smith, J. Mater. Sci. 15, 2573 (1980).

    Article  CAS  Google Scholar 

  17. O. P. Modi, N. Deshmukh, D. P. Mondal, A. K. Jha, A. H. Yegneswaran, and H. K. Khaira, Mater. Charact. 46, 347 (2001).

    Article  CAS  Google Scholar 

  18. H. Y. Liu, Y. Li, and H. Jones, J. Mater. Sci. 33, 1159 (1998).

    Article  CAS  Google Scholar 

  19. E. O. Hall, Proc. Phys. Soc. B 64, 747 (1951).

    Article  Google Scholar 

  20. N. J. Petch, J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  21. S. Ganesan, C. L. Chan, and D. R. Poirier, Mater. Sci. Eng. A 151, 97 (1992).

    Article  Google Scholar 

  22. M. S. Bhat, D. R. Poirier, and J. C. Heinrich, Metall. Mater. Trans. B 26, 1049 (1995).

    Article  Google Scholar 

  23. A. Ourdjini, J. Liu, and R. Elliott, Mater. Sci. Tech. 10, 312 (1994).

    Article  CAS  Google Scholar 

  24. F. Vnuk, M. Sahoo, R. Van De Merwe, and R. W. Smith, J. Mater. Sci. 14, 975 (1979).

    CAS  Google Scholar 

  25. E. H. Aly, M. Mohsen, and E. M. Ahmed, Egypt J. Solids 31, 181 (2008).

    Google Scholar 

  26. A. E. Al-Rawajfeh, and S. M. A. Al Qawabah, Emirates J. Eng. Res. 14, 47 (2009).

    Google Scholar 

  27. K. Maruyama, K. Suto, and J. Nishizawa, Jpn. J. Appl. Phys. 39, 5180 (2000).

    Article  CAS  Google Scholar 

  28. J. Li, Z. Qu, R. Wu, and M. Zhang, Mater. Sci. Eng. A 527, 2780 (2010).

    Article  Google Scholar 

  29. H. Kumar, N. Mehta, K. Singh, and A. Kumar, Physica B 404, 3761 (2009).

    Article  CAS  Google Scholar 

  30. A. Berkdemir, M. Gündüz, and H. Kaya, MS&T06 (Materials Science & Technology), p.168, Duke Energy Center Cincinnati, OHIO (2006).

    Google Scholar 

  31. M. M. Smedskjaer, M. Jensen, and Y. Yue, J. Non-Cryst. Solids 356, 893 (2010).

    Article  CAS  Google Scholar 

  32. W. Xiang, L.H. Mei, L.X. Lin, and Z.Y. Feng, Trans. Nonf. Met. Soc. China 17, 122 (2007).

    Article  Google Scholar 

  33. W. R. Osorio and A. Garcia, Mater. Sci. Eng. A 325, 103 (2002).

    Article  Google Scholar 

  34. G. A. Santos, C. M. Neto, W. R. Osorio, and A. Garcia, Mat. Design 28, 2425 (2007).

    Article  CAS  Google Scholar 

  35. T. Siewert, S. Liu, D. R. Smith and J. C Madeni, Database for Solder Properties with Emphasis on New Lead-Free Solders, National Institute of Standards and Technology, Colorado School of Mines, Colorado (2002).

    Google Scholar 

  36. T. Siewert, J. C. Madeni, and S. Liu, “Lead Free Solder Data Collection and Development”, Plenary Keynote Presentation at the Welding & Joining 2005, Tel Aviv, Israel (2005).

    Google Scholar 

  37. D. E. Gray, American Institute of Physics Handbook, p.2, McGraw-Hill, New York (1957).

    Google Scholar 

  38. S. Malarvizhi, K. Raghukandan and N. Viswanathan, Int. J. Adv. Manuf. Tech. 37, 294 (2008).

    Article  Google Scholar 

  39. V. M. J. Sharma, K. S. Kumar, B. N. Rao and S. D. Pathak, Mater. Sci. Eng. A 502, 45 (2009).

    Article  Google Scholar 

  40. E. F. Prados, V. L. Sordi and M. Ferrante, Mat. Res. 11, 199 (2008).

    Article  CAS  Google Scholar 

  41. C. Yoonsung, M.S. Thesis, The University of Texas, Arlington (1987).

  42. N. El Mahallawy, F. A. Shehata, M. A. El Hameed and M. I. A. El Aal, Mater. Sci. Eng. A 517, 46 (2009).

    Article  Google Scholar 

  43. E. Prados, V. Sordi and M. Ferrante, Mater. Sci. Eng. A 503, 68 (2009).

    Article  Google Scholar 

  44. M. Zhang, W. W. Zhang, H. D. Zhao, D. T. Zhang and Y. Y. Li, Trans. Nonf. Met. Soc. China 17, 496 (2007).

    Article  Google Scholar 

  45. D. R. Fang, Z. F. Zhang, S. D. Wu, C. X. Huang, H. Zhang, N. Q. Zhao and J. J. Li, Mater. Sci. Eng. A 426, 305 (2006).

    Article  Google Scholar 

  46. F. S. J. Jabczynski and B. Cantor, J. Mater. Sci. 16, 2269 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emin Çadırlı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çadırlı, E. Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al-Cu alloys. Met. Mater. Int. 19, 411–422 (2013). https://doi.org/10.1007/s12540-013-3006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-3006-x

Key words

Navigation