Skip to main content
Log in

High speed Cu-Ni filling into TSV for 3-Dimensional Si chip stacking

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of Ni addition on high speed Cu filling into a TSV (through-silicon-via) was investigated for three dimensional (3D) Si chip stacking. Tapered vias were prepared in a Si wafer by deep reactive ion etching process. In order to increase the filling ratio of Cu-Ni into the via, a periodic pulse reverse (PPR) current waveform was applied for electroplating. For comparison Cu filling in the via was also carried out using a PPR current waveform. The Cu and Cu-Ni alloy-filled via was observed by field emission scanning electron microscopy (FE-SEM) to investigate the filling ratio of the vias and to observe the deposition characteristics. The calculated rate of Cu-Ni nuclei formation on the cathode surface was increased by about 1.7 times by Ni addition compared to Cu filling and the increased nucleation rate of the Cu-Ni alloy over Cu was confirmed by FE-SEM. The filling ratio of the Cu-Ni alloy was 1.3 times higher than that of Cu at the same time. The Cu-Ni filling process by the PPR current waveform was confirmed to be effective to fill the TSV in a short time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. K. Tsuiand and S. W. Ricky, IEEE Trans. Adv. Pack. 28, 413 (2005).

    Article  Google Scholar 

  2. Y. N. Kim, J. M. Koo, S. K. Park, and S. B. Jung, J. Kor. Inst. Met & Mater. 46, 33 (2008).

    CAS  Google Scholar 

  3. K. Takahashi, M. Umemoto, N. Tanaka, K. Tanida, Y. Nemoto, Y. Tomita, M. Tago, and M. Bonkohara, Microelectron. Reliabil. 43, 1267 (2003).

    Article  CAS  Google Scholar 

  4. R. Hon, S. W. Ricky Lee, Shawn X. Zhang, C. K. Wong, IEEE. Elec. Pack. Tech. Conf. 384 (2005).

  5. L. J. Ladani, Microelectron. Eng. 87, 208 (2010).

    Article  CAS  Google Scholar 

  6. T. Kobayashi, J. Kawasaki, K. Miura, and H. Honma, Electrochemical Acta 47, 85 (2001).

    Article  CAS  Google Scholar 

  7. M. Lefebvre, G. Allardyce, M. Seita, H. Tsuchida, M. Kusaka, and S. Hayashi, Circuit World 29, 9 (2003).

    Article  CAS  Google Scholar 

  8. C. Lee, S. Tsuru, Y. Kanda, S. Ikeda, and M. Matsumura, J. Electrochem. Soc. 156, D543 (2009).

    Article  CAS  Google Scholar 

  9. K. Y. K. Tsui, S. K. Yau V. C. K. Leung, P. Sun, and D. X. Q. Shi, Proceed. Int. Conf. on Electronic Pack. Tech. & High Density Pack. (ICEPT-HDP), p. 23, IEEE, Beijing (2009).

    Google Scholar 

  10. A. Pohjoranta and R. Tenno, J. Electrochem. Soc. 154. D502 (2007).

    Article  Google Scholar 

  11. J. S. Bae, G. H. Chang, and J. H. Lee, J. Microelectron. & Pack. Soc. 12, 129 (2005).

    Google Scholar 

  12. Z. Wang, O. Yaegashi, H. Sakaue, T. Takahagi, and S. Shingubara, J. Electrochem. Soc. 151, C781 (2004).

    Article  CAS  Google Scholar 

  13. S. Shingubara, Z. Wang, O. Yaegashi, R. Obata, H. Sakaue, and T. Takahagi, Electrochemical and Solid-State Letters 7, C78 (2004).

    Article  CAS  Google Scholar 

  14. S. L. Ko, J. Y. Lin, Y. Y. Wang, and C. C. Wan, Thin Solid Films 516, 5046 (2008).

    Article  CAS  Google Scholar 

  15. W. P. Dow, M. Y. Yen, W. B. Lin, and S. W. Ho, J. Electrochem. Soc. 152, C769 (2005).

    Article  Google Scholar 

  16. M. E. Huerta Garrido and M. D. Pritzker, J. Electrochem. Soc. 155, D332 (2008).

    Article  CAS  Google Scholar 

  17. R. Beica, C. Sharbono, and T. Ritzdorf, 58th Electronic Components and Technology Conference(ECTC 2008), pp.577–583, DTIP2008, Lake Buena Vista, USA (2008).

    Book  Google Scholar 

  18. J. Mendez, R. Akolkar, and U. Landau, J. Electrochem. Soc. 156, D474 (2009).

    Article  CAS  Google Scholar 

  19. I. R. Kim, J. K. Park, Y. C. Chu, and J. P. Jung, Korean J. Met. Mater. 48, 667 (2010).

    CAS  Google Scholar 

  20. I. R. Kim, S. C. Hong, and J. P. Jung, Korean J. Met. Mater. 49, 388 (2011).

    CAS  Google Scholar 

  21. K. M. Hong, D. Y. Keum, and Y. H. Ryu, The Electrochemical Society, 216th ECS Meeting, Abstract #2782, Vienna, Austria (2009).

  22. K. M. Hong, J. K. Kim, S. K. Lee, S. H. Park, B. G. Gyun, Y. D. Ko, N. J. Jeon, and J. S. Chung, Phys. Stat. Sol. B 241, 1684 (2004).

    Article  Google Scholar 

  23. W. B. Bang and K. M. Hong, Electrochemical and Solid-State Letters 10, J86 (2007).

    Article  CAS  Google Scholar 

  24. S. H. Brongersma, E. Richard, I. Vervoot, H. Bender, W. Vandervorst, S. Lagrange, G. Beyer, and K. Maex, J. Appl. Phys. 86, 3642 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Pil Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.C., Kumar, S., Jung, D.H. et al. High speed Cu-Ni filling into TSV for 3-Dimensional Si chip stacking. Met. Mater. Int. 19, 123–128 (2013). https://doi.org/10.1007/s12540-013-1020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-1020-7

Key words

Navigation