Skip to main content
Log in

Hardening characteristics of CO2 laser welds in advanced high strength steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

When the CO2 laser welder with 6 kW output was used to weld 4 TRIP steels, 2 DP steels and a precipitation-hardened steel, which have the tensile strength in the range of 600–1000 MPa, the effect of welding speed on hardening characteristics was investigated. In the weld of TRIP steels and DP steels, the maximum hardness was shown in the fusion zone and the HAZ near the bond line, and the hardness was decreased from the HAZ to the base metal. Only in the PH600 steel, the maximum hardness was shown in the fusion zone and the hardness was decreased from bond line to the base metal. The maximum hardness value was not changed due to the variation of the welding speed within a given range of the welding speed. When the correlation with maximum hardness value using 6 known carbon equivalents was examined, those of CEL (=C+Si/50+Mn/25+P/2+Cr/25) and PL (=C+Mn/22+14B) were 0.96 and 0.95 respectively, and CEL was better because it could reflect the contribution of Si and Cr added to AHSS. The maximum hardness value could be calculated by the equation “Hmax=701CEL+281”. The phase transformation analysis indicated that only martensitic transformation was expected in the given range of the welding conditions. Therefore, the maximum hardness of the weld was the same as that of water cooled steel and not changed with the variation of the welding speed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Hanicke and O. Stranberg, SAE Int. 3, 930028 (1993).

    Google Scholar 

  2. Y. Miyazaki, Proc. 50 th Laser Materials Processing Conference, p.59, Japan Laser Processing Society, Japan (2000).

    Google Scholar 

  3. J. Dearden and M. Okuman, Trans. Int. Weld. 3, 203 (1940).

    Google Scholar 

  4. Y. Ito and K. Bessyo, IIW Doc. 576, 68 (1968).

    Google Scholar 

  5. Y. Ito and K. Bessyo, J. Japan Welding Society 37, 683 (1969).

    Google Scholar 

  6. N. Yurioka, H. Suzuki, and S. Ohshita, Weld. J. 62, 147s (1983).

    Google Scholar 

  7. N. Yurioka, S. Ohshita, and H. Tamehiro, Conf. on Pipeline Welding in 80’s, p.1, AWRA, Melbourne (1981).

    Google Scholar 

  8. Y. Miyazaki and M. Ohara, J. Japan Welding Society 68, 85 (1999).

    Article  Google Scholar 

  9. T. Taka and T. Yamamoto, Proc. 34 th Laser Materials Processing Conference, pp. 113–122, Japan Laser Processing Society, Japan (1995).

    Google Scholar 

  10. S. Kaizu, Y. Shinbo, and M. Ono, J. Japan Welding Society 55, 46 (1994).

    Google Scholar 

  11. M. Ono, A. Yoshitake, and M. Ohmura, Quarterly J. Welding Society 21, 560 (2003).

    Article  CAS  Google Scholar 

  12. A. Uchihara and K. Fukui, Quarterly J. Welding Society 23, 541 (2005).

    Article  CAS  Google Scholar 

  13. M. Ohara and Y. Miyazaki, J. Welding Society 68, 466 (1999).

    Article  CAS  Google Scholar 

  14. H. K. Sung, S. Y. Shin, B. C. Hwang, C. G. Lee, N. J. Kim, and S. H. Lee, Korean J. Met. Mater. 48, 798 (2010).

    Article  CAS  Google Scholar 

  15. T. K. Han, S. S. Park, K. H. Kim, C. Y. Kang, I. S. Woo, and J. B. Lee, ISIJ Int. 45, 60 (2005).

    Article  CAS  Google Scholar 

  16. M. Xia, E. Biro, Z. Tian, and Y. N. Zhou, ISIJ Int. 48, 483 (2008).

    Article  CAS  Google Scholar 

  17. M. Xia, E. Biro, Z. Tian and Y. N. Zhou, ISIJ Int. 48, 809 (2008).

    Article  CAS  Google Scholar 

  18. N. YUrioka, ISIJ Int. 41, 566 (2001).

    Article  CAS  Google Scholar 

  19. M. Ono, A. Yoshitake, and M. Ohmura, Quarterly J. Welding Society 21, 560 (2003).

    Article  CAS  Google Scholar 

  20. B. H. Jung, J. P. Kong, and C. Y. Kang, Korean J. Met. Mater. 50, 230 (2012).

    Google Scholar 

  21. K. Osawa, Y. Suzuki, and S. Tanaka, Kawasaki Steel Technical Report 48, 9 (2003).

    Google Scholar 

  22. T. Saito, Yousetsugijutsu 30, 34 (1982).

    Google Scholar 

  23. N. Saunders, Z. Guo, X. Li, A. P. Miodownik, and L. P. Schille, JOM 55, 60 (2003).

    Article  CAS  Google Scholar 

  24. N. Saunders and A. P. Miodownik, CALPHAD (eds. R. W. Cahn), p.1, A Comprehensive Guide, Pergamon Material Series, Oxford, UK (1998).

    Google Scholar 

  25. Z. Guo and W. Sha, Mater. Sci. Eng. A 392, 449 (2005).

    Article  Google Scholar 

  26. D. A. Akinlade, W. F. Caley, N. L. Richards, and M. C. Chaturvedi, Mater. Sci. Eng. A 486, 626 (2008).

    Article  Google Scholar 

  27. A. Sullivan and J. D. Robson, Mater. Sci. Eng. A 478, 351 (2008).

    Article  Google Scholar 

  28. D. Rosenthal, Weld. J. 20, 220s (1941).

    Google Scholar 

  29. D. Rosenthal, Trans. ASME 48, 848 (1946).

    Google Scholar 

  30. D. Tarui, Y. Sakamoto and K. Shibata, J. Japan Welding Society 54, 86 (1994).

    Google Scholar 

  31. D. Tarui, Y. Sakamoto, and K. Shibata, J. Japan Welding Society 54, 46 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Yun Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, TK., Park, BG. & Kang, CY. Hardening characteristics of CO2 laser welds in advanced high strength steel. Met. Mater. Int. 18, 473–479 (2012). https://doi.org/10.1007/s12540-012-3014-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-3014-2

Key words

Navigation