Skip to main content
Log in

Thermo-mechanical finite element analysis incorporating the temperature dependent stress-strain response of low alloy steel for practical application to the hot stamped part

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The isothermal stress-strain responses of a low alloy steel sheet (0.2C-0.1Si-1.4Mn-0.5Cr-0.01Mo-0.002B steel, 1.2t) at elevated temperature, which simulates the material response in the hot stamping process, were measured by the Gleeble3500 thermo-mechanical simulator. The measured stress-strain responses fitted to the Swift equations discretized within the deformation temperature were used for the practical finite element simulation of the hot stamping process, in which the complicated effects of the volumetric mismatch between phases and phase transformation inducing plasticity were effectively ignored due to the significant constraints by the press stamping. The material parameters for the thermo-mechanical FE simulations were determined by considering the effects of plastic work and phase transformation on the temperature history. A mini-sized b-pillar reinforcing part was used as the simulation model. In spite of the simplified approach adopted in this paper, the finite element procedure could provide important information on the temperature distribution, martensitic phase distribution (or final product hardness), and the effect of process parameters such as punch force on the performance of the final hot stamped product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Naderi and W. Bleck, WIT Trans. Eng. Sci. 57, 95 (2007).

    Google Scholar 

  2. M. Naderi, A. Saeed-Akbari, W. Bleck, Mater. Sci. Eng. A 487, 445 (2008).

    Article  Google Scholar 

  3. M. Oldenburg, P. Åkerström, G. Bergman, P. Salomonsson, Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes (eds., J. M. A. César de Sá and A. D. Santos), p.1181–1186, Porto, Portugal (2007).

    Google Scholar 

  4. A. E. Tekkaya, H. Karbasian, W. Homberg, and M. Kleiner, Prod. Eng. Devel. 1, 85 (2007).

    Article  Google Scholar 

  5. H. Hoffmann, H. So, and H. Steinbeiss, Annals of the CRIP 56, 269 (2007).

    Article  Google Scholar 

  6. M. Naderi, V. Uthaisangsuk, U. Prahl, and W. Bleck, Steel Res. Int 79, 77 (2008).

    CAS  Google Scholar 

  7. M. Merklein and J. Lechler, J. Mater. Process. Tech. 177, 452 (2006).

    Article  CAS  Google Scholar 

  8. H. Karbasian, C. Klimmek, A. Brosisus, and A. E. Tekkaya, Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (ed., P. Hora), p.575–579, Institute of Virtual Manufacturing, Interlaken, Switzerland (2008).

    Google Scholar 

  9. A. Turetta, S. Bruschi, and A. Ghiotti, J Mater Process Tech 177, 396 (2006).

    Article  CAS  Google Scholar 

  10. Y. Chastel, Y. Dahan, E. Massoni, P. Duroux, J. Wilsius, and P. Hein, The 9th International Conference on Technology of Plasticity, p.688–683, Gyeongju, Korea (2008).

  11. H. S. Son, H. G. Kim, and Y. R. Cho, Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (ed., P. Hora), p.593–597, Institute of Virtual Manufacturing, Interlaken, Switzerland (2008).

    Google Scholar 

  12. J. S. Kirkaldy and D. Venugopalan, International Conference on Phase Transformations in Ferrous Alloys (eds. A. R. Marder, J. I. Goldstein), p.125–148, Philadelphia (1983).

  13. G. W. Greenwood, R. H. Johnson, Proc Royal Society 283, 403–422 (1965).

    Article  Google Scholar 

  14. M.-G. Lee, S.-J. Kim, H. N. Han, and W. C. Jeong, Int. J. Plasticity (in press).

  15. H. N. Han, C. G. Lee, D.-W. Suh, and S.-J. Kim, Mater. Sci. Eng. A 485, 224 (2008).

    Article  Google Scholar 

  16. MSC.Marc User’s Guide (Version 2005), MSC. Software Corporation, USA (2004).

  17. K. W. Andrews, J. Iron Steel Inst. 203, 721 (1965).

    CAS  Google Scholar 

  18. T. H. Courtney, Mechanical Behavior of Materials, 2 nd ed., p. 163–164, McGraw-Hill (2000).

  19. D. P. Koistinen and R. E. Marburger, Acta metall. 7, 59 (1959).

    Article  Google Scholar 

  20. G. Bergman and M. Oldenburg, J. Therm. Stresses 20, 679 (1997).

    Article  Google Scholar 

  21. Thermo-Calc® Software User’s Guide Version R, Foundation of Computational Thermodynamics, Stockholm, Sweden (2006).

  22. Thermo-Calc® Software Examples Version R, Foundation of Computational Thermodynamics, Stockholm, Sweden (2006).

  23. E. R. G. Eckert and R. M. Drake, Analysis of Heat Mass Transfer, McGraw-Hill, NewYork (1972).

    MATH  Google Scholar 

  24. Pam-Stamp2G 2008 & Pam-Tube2G 2008 User’s Guide, ESI Group, France (2008).

  25. H. S. Kim, M. H. Seo, S. J. Kim, S. C. Baik, and W. J. Bang, J. Kor. Inst. Met. & Mater. 39, 1076 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Ho Bok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bok, HH., Lee, MG., Kim, HD. et al. Thermo-mechanical finite element analysis incorporating the temperature dependent stress-strain response of low alloy steel for practical application to the hot stamped part. Met. Mater. Int. 16, 185–195 (2010). https://doi.org/10.1007/s12540-010-0405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-0405-0

Keywords

Navigation