Skip to main content
Log in

A Deep Neural Network for Predicting Synergistic Drug Combinations on Cancer

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The exploration of drug combinations presents an opportunity to amplify therapeutic effectiveness while alleviating undesirable side effects. Nevertheless, the extensive array of potential combinations poses challenges in terms of cost and time constraints for experimental screening. Thus, it is crucial to narrow down the search space. Deep learning approaches have gained widespread popularity in predicting synergistic drug combinations tailored for specific cell lines in vitro settings. In the present study, we introduce a novel method termed GTextSyn, which utilizes the integration of gene expression data and chemical structure information for the prediction of synergistic effects in drug combinations. GTextSyn employs a sentence classification model within the domain of Natural Language Processing (NLP), wherein drugs and cell lines are regarded as entities possessing biochemical relevance. Meanwhile, combinations of drug pairs and cell lines are construed as sentences with biochemical relational significance. To assess the efficacy of GTextSyn, we conduct a comparative analysis with alternative deep learning approaches using a standard benchmark dataset. The results from a five-fold cross-validation demonstrate a 49.5% reduction in Mean Square Error (MSE) achieved by GTextSyn, surpassing the performance of the next best method in the regression task. Furthermore, we conduct a comprehensive literature survey on the predicted novel drug combinations and find substantial support from prior experimental studies for many of the combinations identified by GTextSyn.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

We provide the source code and data for GTextSyn, which are accessible at https://github.com/isDing/GTextSyn.

References

  1. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690. https://doi.org/10.1038/nchembio.118

    Article  CAS  PubMed  Google Scholar 

  2. Fitzgerald JB, Schoeberl B, Nielsen UB et al (2006) Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2(9):458–466. https://doi.org/10.1038/nchembio817

    Article  CAS  PubMed  Google Scholar 

  3. Spiro Z, Kovacs IA, Csermely P (2008) Drug-therapy networks and the prediction of novel drug targets. J Biol 7(6):1–5. https://doi.org/10.1186/jbiol81

    Article  CAS  Google Scholar 

  4. Sun Y, Sheng Z, Ma C et al (2015) Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat Commun 6(1):8481. https://doi.org/10.1038/ncomms9481

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kumar V, Dogra N (2022) A comprehensive review on deep synergistic drug prediction techniques for cancer. Arch Computat Methods Eng 29(3):1443–1461. https://doi.org/10.1007/s11831-021-09617-3

    Article  MathSciNet  Google Scholar 

  6. Lopez JS, Banerji U (2017) Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol 14(1):57–66. https://doi.org/10.1038/nrclinonc.2016.96

    Article  CAS  PubMed  Google Scholar 

  7. Yadav B, Wennerberg K, Aittokallio T et al (2015) Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J 13:504–513. https://doi.org/10.1016/j.csbj.2015.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bliss CI (1939) The toxicity of poisons applied jointly 1. Ann Appl Biol 26(3):585–615. https://doi.org/10.1111/j.1744-7348.1939.tb06990.x

    Article  CAS  Google Scholar 

  9. Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittel-forschung 3(6):285–290

    CAS  PubMed  Google Scholar 

  10. Zagidullin B, Aldahdooh J, Zheng S et al (2019) Drugcomb: an integrative cancer drug combination data portal. Nucleic Acids Res 47(W1):W43–W51. https://doi.org/10.1093/nar/gkz337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen X, Ren B, Chen M et al (2016) Nllss: predicting synergistic drug combinations based on semi-supervised learning. PLoS Comput Biol 12(7):e1004975. https://doi.org/10.1371/journal.pcbi.1004975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding P, Yin R, Luo J et al (2018) Ensemble prediction of synergistic drug combinations incorporating biological, chemical, pharmacological, and network knowledge. IEEE J Biomed Health Inf 23(3):1336–1345. https://doi.org/10.1109/JBHI.2018.2852274

    Article  Google Scholar 

  13. Hu J, Gao J, Fang X et al (2022) Dtsyn: a dual-transformer-based neural network to predict synergistic drug combinations. Brief Bioinform 23(5):bbac302. https://doi.org/10.1093/bib/bbac302

    Article  CAS  PubMed  Google Scholar 

  14. Hosseini SR, Zhou X (2023) Ccsynergy: an integrative deep-learning framework enabling context-aware prediction of anti-cancer drug synergy. Brief Bioinform 24(1):bbac588. https://doi.org/10.1093/bib/bbac588

    Article  CAS  PubMed  Google Scholar 

  15. Jiang P, Huang S, Fu Z et al (2020) Deep graph embedding for prioritizing synergistic anticancer drug combinations. Comput Struct Biotechnol J 18:427–438. https://doi.org/10.1016/j.csbj.2020.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meng F, Li F, Liu JX et al (2022) Nexgb: a network embedding framework for anticancer drug combination prediction. Int J Mol Sci 23(17):9838. https://doi.org/10.3390/ijms23179838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma J, Motsinger-Reif A (2021) Prediction of synergistic drug combinations using pca-initialized deep learning. Biodata Min 14:1–15. https://doi.org/10.1186/s13040-021-00278-3

    Article  Google Scholar 

  18. Zhang T, Zhang L, Payne PR et al (2021) Synergistic drug combination prediction by integrating multiomics data in deep learning models. Transl Bioinform Ther Dev. https://doi.org/10.1007/978-1-0716-0849-4_12

    Article  Google Scholar 

  19. Preto AJ, Matos-Filipe P, Mourão J et al (2022) Synpred: prediction of drug combination effects in cancer using different synergy metrics and ensemble learning. GigaScience 11:giac087. https://doi.org/10.1093/gigascience/giac087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Preuer K, Lewis RP, Hochreiter S et al (2018) Deepsynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 34(9):1538–1546. https://doi.org/10.1093/bioinformatics/btx806

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Zhu H, Jiang Y et al (2022) Prodeepsyn: predicting anticancer synergistic drug combinations by embedding cell lines with protein-protein interaction network. Brief Bioinform 23(2):bbab587. https://doi.org/10.1093/bib/bbab587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang P, Tu S (2023) Mgae-dc: predicting the synergistic effects of drug combinations through multi-channel graph autoencoders. PLoS Comput Biol 19(3):e1010951. https://doi.org/10.1371/journal.pcbi.1010951

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Q, Xie L (2021) Transynergy: mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. PLoS Comput Biol 17(2):e1008653. https://doi.org/10.1371/journal.pcbi.1008653

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuru HI, Tastan O, Cicek AE (2021) Matchmaker: a deep learning framework for drug synergy prediction. IEEE ACM Trans Comput Biol 19(4):2334–2344. https://doi.org/10.1109/TCBB.2021.3086702

    Article  Google Scholar 

  25. Du J, Zhang S, Wu G et al (2017) Topology adaptive graph convolutional networks. arXiv preprint. arXiv:1710.10370. https://doi.org/10.48550/arXiv.1710.10370

  26. Wang X, Wang S, Wang S et al (2019) Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting. Int J Electr Power 109:470–479. https://doi.org/10.1016/j.ijepes.2019.02.022

    Article  Google Scholar 

  27. O’Neil J, Benita Y, Feldman I et al (2016) An unbiased oncology compound screen to identify novel combination strategies. Mol Cancer Ther 15(6):1155–1162. https://doi.org/10.1158/1535-7163.MCT-15-0843

    Article  CAS  PubMed  Google Scholar 

  28. Weininger D (1988) Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28(1):31–36. https://doi.org/10.1021/ci00057a005

    Article  CAS  Google Scholar 

  29. Li M, Zhou J, Hu J et al (2021) Dgl-lifesci: an open-source toolkit for deep learning on graphs in life science. ACS Omega 6(41):27233–27238. https://doi.org/10.1021/acsomega.1c04017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Landrum G et al (2013) Rdkit: a software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31

    Google Scholar 

  31. Pham TH, Qiu Y, Zeng J et al (2021) A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to covid-19 drug repurposing. Nat Mach Intell 3(3):247–257. https://doi.org/10.1038/s42256-020-00285-9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ramsundar B, Eastman P, Walters P et al (2019) Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more. O’Reilly Media, Inc.

  33. Ghandi M, Huang FW, Jané-Valbuena J et al (2019) Next-generation characterization of the cancer cell line encyclopedia. Nature 569(7757):503–508. https://doi.org/10.1038/s41586-019-1186-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Subramanian A, Narayan R, Corsello SM et al (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171(6):1437–1452. https://doi.org/10.1016/j.cell.2017.10.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint. arXiv:1609.02907. https://doi.org/10.48550/arXiv.1609.02907

  36. Li Y, Tarlow D, Brockschmidt M et al (2015) Gated graph sequence neural networks. arXiv preprint. arXiv:1511.05493. https://doi.org/10.48550/arXiv.1511.05493

  37. Wolf T, Debut L, Sanh V et al (2020) Transformers: sate-of-the-art natural language processing. In: Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations, pp 38–45. https://aclanthology.org/2020.emnlp-demos.6

  38. Al Banna MH, Ghosh T, Al Nahian MJ et al (2021) Attention-based bi-directional long-short term memory network for earthquake prediction. IEEE Access 9:56589–56603. https://doi.org/10.1109/ACCESS.2021.3071400

    Article  Google Scholar 

  39. Anguita D, Ghelardoni L, Ghio A et al (2012) The ‘k’ in k-fold cross validation. In: ESANN, pp 441–446. https://www.esann.org/sites/default/files/proceedings/legacy/es2012-62.pdf

  40. Wang J, Liu X, Shen S et al (2022) Deepdds: deep graph neural network with attention mechanism to predict synergistic drug combinations. Brief Bioinform 23(1):bbab390. https://doi.org/10.1093/bib/bbab390

    Article  CAS  PubMed  Google Scholar 

  41. Holbeck SL, Camalier R, Crowell JA et al (2017) The national cancer institute almanac: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Can Res 77(13):3564–3576. https://doi.org/10.1158/0008-5472.CAN-17-0489

    Article  CAS  Google Scholar 

  42. Flobak Å, Baudot A, Remy E et al (2015) Discovery of drug synergies in gastric cancer cells predicted by logical modeling. PLoS Comput Biol 11(8):e1004426. https://doi.org/10.1371/journal.pcbi.1004426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Velickovic P, Cucurull G, Casanova A et al (2017) Graph attention networks. Stat 1050(20):10–48550. https://doi.org/10.48550/arXiv.1710.10903

    Article  Google Scholar 

  44. Centelles MN, Wright M, So PW et al (2018) Image-guided thermosensitive liposomes for focused ultrasound drug delivery: using nirf-labelled lipids and topotecan to visualise the effects of hyperthermia in tumours. J Control Release 280:87–98. https://doi.org/10.1016/j.jconrel.2018.04.047

    Article  CAS  PubMed  Google Scholar 

  45. Akutsu M, Suzuki K, Tsunoda S et al (1994) Effects of sn-38 in combination with other anticancer agents against dauji cells. Gan to Kagaku ryoho Cancer Chemother 21(10):1607–1611

    CAS  Google Scholar 

  46. Tanaka R, Ariyama H, Qin B et al (2005) Synergistic interaction between oxaliplatin and sn-38 in human gastric cancer cell lines in vitro. Oncol Rep 14(3):683–688. https://doi.org/10.3892/or.14.3.683

    Article  CAS  PubMed  Google Scholar 

  47. Aung TT, Davis MA, Ensminger WD et al (2000) Interaction between gemcitabine and mitomycin-c in vitro. Cancer Chemoth Pharm 45:38–42. https://doi.org/10.1007/PL00006740

    Article  CAS  Google Scholar 

  48. Nagourney R, Sommers B, Harper S et al (2003) Ex vivo analysis of topotecan: advancing the application of laboratory-based clinical therapeutics. BJC 89(9):1789–1795. https://doi.org/10.1038/sj.bjc.6601336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fujii M, Ohnuma T, Szrajer L et al (1993) Effects of mitomycin-c and etoposide in cell culture and in nude mice: the role of g-csf mutein. Cancer Invest 11(3):283–290. https://doi.org/10.3109/07357909309024853

    Article  CAS  PubMed  Google Scholar 

  50. Yazdani-Jahromi M, Yousefi N, Tayebi A et al (2022) Attentionsitedti: an interpretable graph-based model for drug-target interaction prediction using nlp sentence-level relation classification. Brief Bioinform 23(4):bbac272. https://doi.org/10.1093/bib/bbac272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Scholarship Council (CSC) Program (Grant No. [2022]715, file No.202008430202).

Funding

This article is funded by China Scholarship Council (Grant No. [2022]715, file No.202008430202), Shiyu Yan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyu Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Zheng, D. A Deep Neural Network for Predicting Synergistic Drug Combinations on Cancer. Interdiscip Sci Comput Life Sci 16, 218–230 (2024). https://doi.org/10.1007/s12539-023-00596-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-023-00596-6

Keywords

Navigation