Skip to main content

Advertisement

Log in

Predicting Potential Drug–Disease Associations Based on Hypergraph Learning with Subgraph Matching

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The search for potential drug–disease associations (DDA) can speed up drug development cycles, reduce costly wasted resources, and accelerate disease treatment by repurposing existing drugs that can control further disease progression. As technologies such as deep learning continue to mature, many researchers tend to use emerging technologies to predict potential DDA. The performance of DDA prediction is still challenging and there is some space for improvement due to issues such as the small number of existing associations and possible noise in the data. To better predict DDA, we propose a computational approach based on hypergraph learning with subgraph matching (HGDDA). In particular, HGDDA first extracts feature subgraph information in the validated drug–disease association network and proposes a negative sampling strategy based on similarity network to reduce the data imbalance. Second, the hypergraph Unet module is used by extracting Finally, the potential DDA is predicted by designing a hypergraph combination module to convolution and pooling the two constructed hypergraphs separately, and calculating the difference information between the subgraphs using cosine similarity for node matching. The performance of HGDDA is verified under two standard datasets by 10-fold cross-validation (10-CV), and the results outperform existing drug–disease prediction methods. In addition, to validate the overall utility of the model, the top 10 drugs for the specific disease are predicted through the case study and validated using the CTD database.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chan HS, Shan H, Dahoun T, Vogel H, Yuan S (2019) Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci 40(8):592–604. https://doi.org/10.1016/j.tips.2019.06.004

    Article  CAS  PubMed  Google Scholar 

  2. Baudot A, Gomez-Lopez G, Valencia A (2009) Translational disease interpretation with molecular networks. Genome Biol 10(6):1–9. https://doi.org/10.1186/gb-2009-10-6-221

    Article  Google Scholar 

  3. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L (2007) The human disease network. Proc Natl Acad Sci 104(21):8685–8690. https://doi.org/10.1073/pnas.0701361104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luo H, Wang J, Li M, Luo J, Peng X, Wu F-X, Pan Y (2016) Drug repositioning based on comprehensive similarity measures and bi-random walk algorithm. Bioinformatics 32(17):2664–2671. https://doi.org/10.1093/bioinformatics/btw228

    Article  CAS  PubMed  Google Scholar 

  5. Wang W, Yang S, Zhang X, Li J (2014) Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 30(20):2923–2930. https://doi.org/10.1093/bioinformatics/btu403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Y, Guo M, Ren Y, Jia L, Yu G (2019) Drug repositioning based on individual bi-random walks on a heterogeneous network. BMC Bioinform 20(15):1–13. https://doi.org/10.1186/s12859-019-3117-6

    Article  Google Scholar 

  7. Xuan P, Cui H, Shen T, Sheng N, Zhang T (2019) Heterodualnet: a dual convolutional neural network with heterogeneous layers for drug–disease association prediction via chou’s five-step rule. Front Pharmacol 10:1301. https://doi.org/10.3389/fphar.2019.01301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang H-J, Huang Y-A, You Z-H (2019) Predicting drug-disease associations via using gaussian interaction profile and kernel-based autoencoder. BioMed Res Int. https://doi.org/10.1155/2019/2426958

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Deng G, Zeng N, Song X, Zhuang Y (2019) Drug–disease association prediction based on neighborhood information aggregation in neural networks. IEEE Access 7:50581–50587. https://doi.org/10.1109/ACCESS.2019.2907522

    Article  Google Scholar 

  10. Kitsiranuwat S, Suratanee A, Plaimas K (2021) Multi-data aspects of protein similarity with a learning technique to identify drug–disease associations. Appl Sci 11(7):2914. https://doi.org/10.3390/app11072914

    Article  CAS  Google Scholar 

  11. Kitsiranuwat S, Suratanee A, Plaimas K (2022) Integration of various protein similarities using random forest technique to infer augmented drug-protein matrix for enhancing drug–disease association prediction. Sci Prog 105(3):00368504221109215. https://doi.org/10.1177/00368504221109215

    Article  CAS  Google Scholar 

  12. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. https://doi.org/10.48550/arXiv.1609.02907

  13. Yu Z, Huang F, Zhao X, Xiao W, Zhang W (2021) Predicting drug–disease associations through layer attention graph convolutional network. Brief Bioinform 22(4):243. https://doi.org/10.1093/bib/bbaa243

    Article  CAS  Google Scholar 

  14. Cai L, Lu C, Xu J, Meng Y, Wang P, Fu X, Zeng X, Su Y (2021) Drug repositioning based on the heterogeneous information fusion graph convolutional network. Brief Bioinform 22(6):319. https://doi.org/10.1093/bib/bbab319

    Article  CAS  Google Scholar 

  15. Gottlieb A, Stein GY, Ruppin E, Sharan R (2011) Predict: a method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol 7(1):496. https://doi.org/10.1038/msb.2011.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(suppl 1):901–906. https://doi.org/10.1093/nar/gkm958

    Article  CAS  Google Scholar 

  17. Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA (2000) Online mendelian inheritance in man (omim). Hum Mutat 15(1):57–61. https://doi.org/10.1002/ajmg.a.62407

    Article  CAS  PubMed  Google Scholar 

  18. Van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA (2006) A text-mining analysis of the human phenome. Eur J Hum Genet 14(5):535–542. https://doi.org/10.1038/sj.ejhg.5201585

    Article  CAS  PubMed  Google Scholar 

  19. Hu P, Huang Y-A, Mei J, Leung H, Chen Z-H, Kuang Z-M, You Z-H, Hu L (2021) Learning from low-rank multimodal representations for predicting disease–drug associations. BMC Med Inform Decision Making 21(1):1–13. https://doi.org/10.1186/s12911-021-01648-x

    Article  Google Scholar 

  20. Gleich DF (2015) Pagerank beyond the web. SIAM Rev 57(3):321–363. https://doi.org/10.1137/140976649

    Article  Google Scholar 

  21. Gao H, Ji S (2019) Graph u-nets. In: International conference on machine learning, PMLR, pp 2083–2092. https://doi.org/10.1109/TPAMI.2021.3081010

  22. Feng Y, You H, Zhang Z, Ji R, Gao Y (2019) Hypergraph neural networks. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 3558–3565. https://doi.org/10.1609/aaai.v33i01.33013558

  23. Guo G, Wang H, Bell D, Bi Y, Greer K (2003) Knn model-based approach in classification. In: OTM confederated international conferences on the move to meaningful internet systems. Springer, pp 986–996. https://doi.org/10.1007/978-3-540-39964-3_62

  24. Li R-H, Yu JX, Qin L, Mao R, Jin T (2015) On random walk based graph sampling. In: 2015 IEEE 31st international conference on data engineering. IEEE, pp 927–938. https://doi.org/10.1109/ICDE.2015.7113345

  25. Diehl F (2019) Edge contraction pooling for graph neural networks. arXiv preprint arXiv:1905.10990. https://doi.org/10.48550/arXiv.1905.10990

  26. Feng F, He X, Zhang H, Chua T-S (2021) Cross-gcn: enhancing graph convolutional network with k-order feature interactions. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2021.3077524

    Article  Google Scholar 

  27. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980

  28. Mongia A, Chouzenoux E, Majumdar A (2022) Computational prediction of drug–disease association based on graph-regularized one bit matrix completion. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2022.3189879

    Article  Google Scholar 

  29. Luo H, Li M, Wang S, Liu Q, Li Y, Wang J (2018) Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Bioinformatics 34(11):1904–1912. https://doi.org/10.1093/bioinformatics/bty013

    Article  CAS  PubMed  Google Scholar 

  30. Yang M, Luo H, Li Y, Wang J (2019) Drug repositioning based on bounded nuclear norm regularization. Bioinformatics 35(14):455–463. https://doi.org/10.1093/bioinformatics/btz331

    Article  CAS  Google Scholar 

  31. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, Wiegers TC, Mattingly CJ (2021) Comparative toxicogenomics database (ctd): update 2021. Nucleic Acids Res 49(D1):1138–1143. https://doi.org/10.1093/nar/gkaa891

    Article  CAS  Google Scholar 

Download references

Funding

This research is supported by Scientific Research Fund Project of the Education Department of Liaoning Province (No. LJKZ0028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinmiao Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Song, J., Wei, M. et al. Predicting Potential Drug–Disease Associations Based on Hypergraph Learning with Subgraph Matching. Interdiscip Sci Comput Life Sci 15, 249–261 (2023). https://doi.org/10.1007/s12539-023-00556-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-023-00556-0

Keywords

Navigation