Skip to main content
Log in

MYOD and HAND transcription factors have conserved recognition sites in mTOR promoter: insights from in silico analysis

  • Short Communication
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

mTOR regulates multiple cellular processes that are critical for proper maintenance of cell growth and development. However, mechanisms and factors responsible for transcriptional regulation of mTOR are partially known. To identify different transcription factor binding sites in promoter region of mTOR, we performed in silico phylogenetic foot printing analysis of diverse set of human orthologs. Phylogenetic tree for the orthologs was generated to establish the evolutionary relationships among them. Conserved binding sites among the species were predicted by tool MEME. The predicted conserved sites were further analyzed for binding of transcription factors by MatInspector program. Predicted TFs were then integrated with known physical interactions and coexpression data to decipher the important transcriptional regulators of mTOR signaling. Our study suggests that motifs AGGCGGG (+ 15 to + 21) and GGCGGC (+ 60 to + 65) are highly conserved across the species and are recognition sequence for HAND and MYOD transcription factors, respectively. Also these two transcription factors show direct physical interaction in protein–protein interaction map, indicating their regulatory role on expression of mTOR for control of myogenesis. Our study provides novel clues on differential regulation of mTOR under diverse environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Potter CJ, Pedraza LG, Xu T (2002) Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4:658–665. https://doi.org/10.1038/ncb840

    Article  CAS  PubMed  Google Scholar 

  2. Wu X, Senechal K, Neshat MS et al (1998) The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 95:15587–15591. https://doi.org/10.1073/pnas.95.26.15587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sheng Z, Ma L, Sun JE et al (2011) BCR-ABL suppresses autophagy through ATF5-mediated regulation of mTOR transcription. Blood 118:2840–2848. https://doi.org/10.1182/blood-2010-12-322537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Park S, Zhao D, Hatanpaa KJ et al (2009) RIP1 activates PI3K-Akt via a dual mechanism involving NF-κB-mediated inhibition of the mTOR-S6K-IRS1 negative feedback loop and down-regulation of PTEN. Cancer Res 69:4107–4111. https://doi.org/10.1158/0008-5472.CAN-09-0474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bendavit G, Aboulkassim T, Hilmi K et al (2016) Nrf2 transcription factor can directly regulate mTOR: linking cytoprotective gene expression to a major metabolic regulator that generates redox activity. J Biol Chem 291:25476–25488. https://doi.org/10.1074/jbc.M116.760249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu M, Tao G, Kang M et al (2013) A polymorphism (rs2295080) in mTOR promoter region and its association with gastric cancer in a Chinese population. PLoS One. https://doi.org/10.1371/journal.pone.0060080

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xiang H, Liu S, Zong C et al (2015) A single nucleotide polymorphism in the MTOR gene is associated with recurrent spontaneous abortion in the Chinese female population. Syst Biol Reprod Med 61:205–210. https://doi.org/10.3109/19396368.2014.977499

    Article  CAS  PubMed  Google Scholar 

  8. Rombauts S, Florquin K, Lescot M et al (2003) Computational approaches to identify promoters and cis-regulatory elements in plant genomes. Plant Physiol 132:1162–1176. https://doi.org/10.1104/PP.102.017715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wasserman WW, Alkema W (2008) Phylogenetic footprinting. Life Sci 36:551–576. https://doi.org/10.1002/9780470015902.a0005091.pub2

    Article  Google Scholar 

  10. Tagle DA, Koop BF, Goodman M et al (1988) Embryonic ε and γ globin genes of a prosimian primate (Galago crassicaudatus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J Mol Biol 203:439–455. https://doi.org/10.1016/0022-2836(88)90011-3

    Article  CAS  PubMed  Google Scholar 

  11. Gumucio DL, Heilstedt-Williamson H, Gray TA et al (1992) Phylogenetic footprinting reveals a nuclear protein which binds to silencer sequences in the human gamma and epsilon globin genes. Mol Cell Biol 12:4919–4929. https://doi.org/10.1128/MCB.12.11.4919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blanchette M, Tompa M (2002) Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res 12:739–748. https://doi.org/10.1101/gr.6902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cartharius K, Frech K, Grote K et al (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942. https://doi.org/10.1093/bioinformatics/bti473

    Article  CAS  PubMed  Google Scholar 

  14. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. https://doi.org/10.1093/nar/gkl198

    Article  PubMed  PubMed Central  Google Scholar 

  15. Neph S, Stergachis AB, Reynolds A et al (2012) Circuitry and dynamics of human transcription factor regulatory networks. Cell 150:1274–1286. https://doi.org/10.1016/j.cell.2012.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wasserman WW, Sandelin A (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5:276–287. https://doi.org/10.1038/nrg1315

    Article  CAS  PubMed  Google Scholar 

  17. Abeel T, Saeys Y, Bonnet E et al (2008) Generic eukaryotic core promoter prediction using structural features of DNA. Genome Res 18:310–323. https://doi.org/10.1101/gr.6991408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98 (article-id 691774)

    CAS  Google Scholar 

  19. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29

    CAS  PubMed  Google Scholar 

  21. Quandt K, Frech K, Karas H et al (1995) Matlnd and matlnspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 23:4878–4884. https://doi.org/10.1093/nar/23.23.4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsu T, Trojanowska M, Watson DK (2004) Ets proteins in biological control and cancer. J Cell Biochem 91:896–903. https://doi.org/10.1002/jcb.20012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jablonska A, Polouliakh N (2014) In silico discovery of novel transcription factors regulated by mTOR-pathway activities. Front Cell Dev Biol 2:1–9. https://doi.org/10.3389/fcell.2014.00023

    Article  Google Scholar 

  24. Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659. https://doi.org/10.1038/ncomms6659

    Article  CAS  PubMed  Google Scholar 

  25. Tang Q-Q, Otto TC, Lane MD (2003) CCAAT/enhancer-binding protein is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci 100:850–855. https://doi.org/10.1073/pnas.0337434100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bollinger LM, Witczak CA, Houmard JA, Brault JJ (2014) SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner. AJP Cell Physiol 307:C278–C287. https://doi.org/10.1152/ajpcell.00391.2013

    Article  CAS  Google Scholar 

  27. Ganjam GK, Dimova EY, Unterman TG, Kietzmann T (2009) FoxO1 and HNF-4 are involved in regulation of hepatic glucokinase gene expression by resveratrol. J Biol Chem 284:30783–30797. https://doi.org/10.1074/jbc.M109.045260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Warde-Farley D, Donaldson SL, Comes O et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. https://doi.org/10.1093/nar/gkq537

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim JA, Shon YH, Lim JO et al (2013) MYOD mediates skeletal myogenic differentiation of human amniotic fluid stem cells and regeneration of muscle injury. Stem Cell Res Ther 4:147. https://doi.org/10.1186/scrt358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han Z (2006) Hand, an evolutionarily conserved bHLH transcription factor required for Drosophila cardiogenesis and hematopoiesis. Development 133:1175–1182. https://doi.org/10.1242/dev.02285

    Article  CAS  PubMed  Google Scholar 

  31. Tögel M, Meyer H, Lehmacher C et al (2013) The bHLH transcription factor hand is required for proper wing heart formation in Drosophila. Dev Biol 381:446–459. https://doi.org/10.1016/j.ydbio.2013.05.027

    Article  CAS  PubMed  Google Scholar 

  32. Larkin M, Blackshields G, Brown N et al (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grant to RP from Department of Biotechnology, Ministry of Science and Technology, India. Initial work contribution of Medha Sharma is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vikrant Nain or Rekha Puria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1. Motifs occurrence across each species. Yes (Y, Grey), No (N, Red) (XLSX 13 KB)

12539_2018_284_MOESM2_ESM.xlsx

Supplementary Table 2. Location of each motif with respect to transcription start site and gap between each motif (in base pairs) (XLSX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasthi, A., Nain, V. & Puria, R. MYOD and HAND transcription factors have conserved recognition sites in mTOR promoter: insights from in silico analysis. Interdiscip Sci Comput Life Sci 11, 329–335 (2019). https://doi.org/10.1007/s12539-018-0284-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-018-0284-5

Keywords

Navigation