Skip to main content

Advertisement

Log in

Exon skipping event prediction based on histone modifications

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Alternative splicing is a tissue and developmental stage specific process and greatly increases the biodiversity of proteins. Besides the trans- and cis-factors on the genome level, the process of RNA splicing is also regulated by epigenetic factors. In the present work, we proposed a new method to predict exon skipping events by using the histone methylation and acetylation information. The maximum relevance minimum redundancy method followed by incremental feature selection was performed to select the optimal feature set. Based on the optimized features, our method obtained an overall accuracy of 68.5% in a 10-fold cross validation test for exon skipping event prediction. It is anticipated that our method may become a useful tool for alternative splicing events prediction and the selected optimal features will provide insights into the regulatory mechanisms of epigenetic factors in alternative splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barash, Y., Calarco, J.A., Gao, W., Pan, Q., Wang, X., Shai, O., Blencowe, B.J., Frey, B.J. 2010. Deciphering the splicing code. Nature 465, 53–59.

    Article  PubMed  CAS  Google Scholar 

  2. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., Zhao, K. 2007 High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837.

    Article  PubMed  CAS  Google Scholar 

  3. Bernstein, B.E., Meissner, A., Lander, E.S. 2007 The mammalian epigenome. Cell 128, 669–681.

    Article  PubMed  CAS  Google Scholar 

  4. Black, D.L. 2003. Mechanisms of alternative premessenger RNA splicing. Annu Rev Biochem 72, 291–336.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, W., Feng, P.M., Lin, H., Chou, K.C. 2013. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res 41, e68.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Chen, W., Lin, H., Feng, P.M., Ding, C., Zuo, Y.C., Chou, K.C. 2012. iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties. Plos One 7, e47843.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Chen, W., Luo, L.F., Zhang, L.R. 2010. The organization of nucleosomes around splice sites. Nucleic Acids Res 38, 2788–2798.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Chou, K.C., Shen, H.B. 2008. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3, 153–162.

    Article  PubMed  CAS  Google Scholar 

  9. David, C.J., Chen, M., Assanah, M., Canoll, P., Manley, J.L. 2010. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. de Almeida, S.F., Grosso, A.R., Koch, F., Fenouil, R., Carvalho, S., Andrade, J., Levezinho, H., Gut, M., Eick, D., Gut, I., Andrau, J.C., Ferrier, P., Carmo-Fonseca, M. 2011. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat Struct Mol Biol 18, 977–983.

    Article  PubMed  Google Scholar 

  11. Enroth, S., Bornelov, S., Wadelius, C., Komorowski, J. 2012. Combinations of histone modifications mark exon inclusion levels. PloS One 7, e29911.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Feng, P.M., Chen, W., Lin, H., Chou, K.C. 2013 iHSPPseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal Biochem 442, 118–125.

    Article  PubMed  CAS  Google Scholar 

  13. Garcia-Blanco, M.A., Baraniak, A.P., Lasda, E.L. 2004. Alternative splicing in disease and therapy. Nat Biotechnol 22, 535–546.

    Article  PubMed  CAS  Google Scholar 

  14. He, Z., Zhang, J., Shi, X.H., Hu, L.L., Kong, X., Cai, Y.D., Chou, K.C. 2010. Predicting drug-target interaction networks based on functional groups and biological features. Plos One 5, e9603.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hoskins, A.A., Moore, M.J. 2012. The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci 37, 179–188.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Kelemen, O., Convertini, P., Zhang, Z., Wen, Y., Shen, M., Falaleeva, M., Stamm, S. 2013. Function of alternative splicing. Gene 514, 1–30.

    Article  PubMed  CAS  Google Scholar 

  17. Kolasinska-Zwierz, P., Down, T., Latorre, I., Liu, T., Liu, X.S., Ahringer, J. 2009 Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41, 376–381.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128, 693–705.

    Article  PubMed  CAS  Google Scholar 

  19. Lai, T.S., Greenberg, C.S. 2013. TGM2 and implications for human disease: role of alternative splicing. Front Biosci 18, 504–519.

    Article  CAS  Google Scholar 

  20. Lin, H. 2008. The modified Mahalanobis Discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition. J Theor Biol 252, 350–356.

    Article  PubMed  CAS  Google Scholar 

  21. Lin, H., Chen, W., Ding, H. 2013. AcalPred: A Sequence-Based Tool for Discriminating between Acidic and Alkaline Enzymes. Plos One 8, e75726.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Luco, R.F., Allo, M., Schor, I.E., Kornblihtt, A.R., Misteli, T. 2011. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Luco, R.F., Pan, Q., Tominaga, K., Blencowe, B.J., Pereira-Smith, O.M., Misteli, T. 2010. Regulation of alternative splicing by histone modifications. Science 327, 996–1000.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Lv, J., Luo, L.F., Zhang, L.R., Chen, W., Zhang, Y. 2010. Increment of diversity with quadratic discriminant analysis- an efficient tool for sequence pattern recognition in bioinformatics. Open Access Bioinformatics 2, 89–96.

    Google Scholar 

  25. Oberdoerffer, S., Moita, L.F., Neems, D., Freitas, R.P., Hacohen, N., Rao, A. 2008 Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL. Science 321, 686–691.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Orr-Urtreger, A., Bedford, M.T., Burakova, T., Arman, E., Zimmer, Y., Yayon, A., Givol, D., Lonai, P. 1993. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol. 158, 475–486.

    Article  PubMed  CAS  Google Scholar 

  27. Pan, Q., Shai, O., Lee, L.J., Frey, B.J., Blencowe, B.J. 2008. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40, 1413–1415.

    Article  PubMed  CAS  Google Scholar 

  28. Peng, H., Long, F., Ding, C. 2005. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE transactions on Pattern Analysis and Machine Intelligence 27, 1226–1238.

    Article  PubMed  Google Scholar 

  29. Ponta, H., Sherman, L., Herrlich, P.A. 2003. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4, 33–45.

    Article  PubMed  CAS  Google Scholar 

  30. Pradeepa, M.M., Sutherland, H.G., Ule, J., Grimes, G.R., Bickmore, W.A. 2012. Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. Plos Genet 8, e1002717.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Saint-Andre, V., Batsche, E., Rachez, C., Muchardt, C. 2011. Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons. Nat Struct Mol Biol 18, 337–344.

    Article  PubMed  CAS  Google Scholar 

  32. Schor, I.E., Rascovan, N., Pelisch, F., Allo, M., Kornblihtt, A.R. 2009. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci U S A 106, 4325–4330.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Screaton, G.R., Bell, M.V., Bell, J.I., Jackson, D.G. 1993. The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. J Biol Chem 268, 12235–12238.

    PubMed  CAS  Google Scholar 

  34. Shindo, Y., Nozaki, T., Saito, R., Tomita, M. 2013. Computational analysis of associations between alternative splicing and histone modifications. FEBS Lett 587, 516–521.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F., Schroth, G.P., Burge, C.B. 2008a. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Wang, Z., Burge, C.B. 2008. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Wang, Z., Zang, C., Rosenfeld, J.A., Schones, D.E., Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Peng, W., Zhang, M.Q., Zhao, K. 2008b. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40, 897–903.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Warzecha, C.C., Hovhannisyan, R., Carstens, R.P. 2012. Dynamic fluorescent and luminescent reporters for cell-based splicing screens. Methods Mol Biol 867, 273–287.

    Article  PubMed  CAS  Google Scholar 

  39. White, E.S., Baralle, F.E., Muro, A.F. 2008. New insights into form and function of fibronectin splice variants. J Pathol 216, 1–14.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, L.R., Luo, L.F. 2003. Splice site prediction with quadratic discriminant analysis using diversity measure. Nucleic Acids Res 31, 6214–6220.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Zhou, H.L., Luo, G., Wise, J.A., Lou, H. 2013. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res doi:10.1093/nar/gkt875.

  42. Zhang, Q.W., Peng, Q.K., Zhang, Q., Yan, Y.H., Li, K.K., Li, J. 2010. Splice sites prediction of Human genome using length-variable Markov model and feature selection. Expert Syst Appl 37, 2771–2782

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen or Hao Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Lin, H., Feng, P. et al. Exon skipping event prediction based on histone modifications. Interdiscip Sci Comput Life Sci 6, 241–249 (2014). https://doi.org/10.1007/s12539-013-0195-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-013-0195-4

Key words

Navigation