Skip to main content
Log in

Study on variability assessment and evolutionary relationships of glutamate racemase in Pseudomonas species

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Pseudomonas species is known to cause multiple nosocomial infections in patients and results in high morbidity and mortality rates (10%). The greatest obstacle in treating patients infected with the Pseudomonas species is the widespread emergence of antibiotic resistance. Hence, there is an urgent need to develop new compounds which can be effective against Pseudomonas species and possibly remain tolerant to drug resistance. The enzyme glutamate racemase plays an important role in cell wall synthesis of bacteria and as a rate limiting step, thus it is an excellent target for the designing of new class of antibacterial agents. The objective of this study is to investigate the variations in sequences of glutamate racemase, a potential drug target across the all 31 species of Pseudomonas. Sequence variability and conservation for functional motif identification is helpful for identifying evolutionarily important residues with functional significance; subsequently these results of variable sites were supported by entropy profile obtained from protein variability server using Shannon entropy. Phylogenetic profile among the different Pseudomonas sp. having fully/highly conserved residues was observed, suggesting possible functional similarities between them. The variation analysis in conserved and non-conserved region of the sequence can be used to predict the binding site for target specific drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akaike, H. 1974. A new look at the statistical model identification. IEEE Trans Autom Contr ACM 19, 716–723.

    Article  Google Scholar 

  2. Chauhan, D.S., Chandra, S., Gupta, A., Singh, T.R. 2012. Molecular modeling, docking and interaction studies of human-plasmogen and salmonella-enolase with enolase inhibitors. Bioinformation 8, 185–188.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fisher, S.L. 2008. Glutamate racemase as a target for drug discovery. Microbial Biotechnol 5, 345–360.

    Article  Google Scholar 

  4. Glavas, S., Tanner, M.E. 2003. Active site residues of glutamate racemase. Biochemistry 40, 6199–6204.

    Article  Google Scholar 

  5. Gunbin, K.V., Suslov, V.V., Turnaev, I.I., Afonnikov, D.A., Kolchanov, N.A. 2011. Molecular evolution of cyclin proteins in animals and fungi. BMC Evol Biol 11, 224.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Gupta, U., Banerjee, K., Gabrani, R., Gupta, S., Sharma, S.K., Jain, C.K. 2011. Variability analyses of functional domains within glucosamine-6-phosphate synthase of mycoses causing fungi. Bioinformation 6, 196–199.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hwang, K.Y., Cho, C.S., Kim, S.S., Sung, H.C., Yu, Y.G., Cho, Y. 1999. Structure and mechanism of glutamate racemase from Aquifex pyrophilus. Nat Struct Biol 6, 422–426.

    Article  CAS  PubMed  Google Scholar 

  8. Jobb, G., von Haeseler, A., Strimmer, K. 2004. TREEFINDER: A powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4, 18.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kumar, S., Nei, M., Dudley, J., Tamura, K. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9, 299–306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lewenza, S., Falsafi, R.K., winsor, G., Gooderham, W.J., Macphee, J.B., Brinkman, F.S., Hancock, R.E. 2005. Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: A tool for identifying differentially regulated genes. Genome Res 15, 583–589.

    Article  CAS  PubMed  Google Scholar 

  11. Lundqvist, T., Fisher, S.L., Kern, G., Folmer, R.H., Xue, Y., Newton, D.T., Keating, T.A., Alm, R.A., de Jonge, B.L. 2007. Exploitation of structural and regulatory diversity in glutamate racemases. Nature 447, 817–822.

    Article  CAS  PubMed  Google Scholar 

  12. Magliery, T.J., Regan, L. 2005. Sequence variation in ligand binding sites in proteins. BMC Bioinformatics 6, 240.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Posada, D., Crandall, K.A., 1998. MODELTEST: Testing the model of DNA substitution. Bioinformatics 14, 817–818.

    Article  CAS  PubMed  Google Scholar 

  14. Shannon, C.E. 1948. The mathematical theory of communication. Bell Sys Tech J 27, 379–423.

    Article  Google Scholar 

  15. Simossis, V.A., Heringa, J. 2003. The PRALINE online server: optimizing progressive multiple alignment on the web. Comput Biol Chem 27, 511–519.

    Article  CAS  PubMed  Google Scholar 

  16. Singh, T.R. 2008 Mitochondrial gene rearrangements: New paradigm in the evolutionary biology and systematics. Bioinformation 3, 95–97.

    Article  PubMed  Google Scholar 

  17. Singh, T.R., Pardasani, K.R. 2009. In silico analysis of evolutionary patterns in restriction endonucleases. In Silico Biol 9, 45–53.

    CAS  PubMed  Google Scholar 

  18. Singh, T.R., Shneor, O., Huchon, D. 2008. Bird mitochondrial gene order: insight from 3 warbler mitochondrial genomes. Mol Biol Evol 25, 475–477.

    Article  CAS  PubMed  Google Scholar 

  19. Singh, T.R., Tsagkogeorga, G., Delsuc, F., Blanquart, S., Shenkar, N., Loya, Y., Douzery, E., Huchon, D. 2009. Tunicate mitogenomics and phylogenetics: Peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny. BMC Genomics 10, 534.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Tanner, M.E., Gallo, K.A., Knowles, J.R. 1993. Isotope effects and the identification of catalytic residues in the reaction catalyzed by glutamate racemase. Biochemistry 32, 3998–4006.

    Article  CAS  PubMed  Google Scholar 

  21. Van Eldere, J. 2003. Multicentre surveillance of Pseudomonas aeruginosa susceptibility patterns in nosocomial infections. J Antimicrob Chemother 51, 347–352.

    Article  PubMed  Google Scholar 

  22. Vasil, M.L., Chamberlain, C., Grant, C.C. 1986. Molecular studies of Pseudomonas exotoxin A gene. Infect Immun 52, 538–548.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Woods, D.E., Iglewski, B.H. 1983. Toxins of Pseudomonas aeruginosa: New perspectives. Rev Infect Dis 5, S715–S722.

    Article  PubMed  Google Scholar 

  24. Wu, T.T., Kabat. E.A. 1970. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132, 211–250.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zvelebil, M.J., Sternberg, M.J. 1998. Analysis and prediction of the location of catalytic residues in enzymes. Protein Eng 2, 127–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiratha Raj Singh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushik, P., Jain, C.K., Gabrani, R. et al. Study on variability assessment and evolutionary relationships of glutamate racemase in Pseudomonas species. Interdiscip Sci Comput Life Sci 5, 247–257 (2013). https://doi.org/10.1007/s12539-013-0181-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-013-0181-x

Key words

Navigation