Skip to main content
Log in

Cross-talks of sensory transcription networks in response to various environmental stresses

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2009

Abstract

For living organisms like Saccharomyces cerevisiae, instinctual response to sudden environmental changes leads to swift establishment of adaptive mechanisms. The issue about how TFs sense and adapt to various environmental stresses has not been systematically studied yet. Here we try to elucidate this problem with the assistance of genomic expression patterns from a computation perspective. A dynamic transcriptional regulatory model is employed to uncover significant TF-target regulatory relationships under various environmental stresses. Based on a global microarray dataset that describes how transcriptional regulators significantly respond to one specific stress, we constructed a sensory transcriptional network for the potential specific stressresponsive regulators. Alternatively, we have observed cross-talks among these sensory transcription networks that may shed light on general stress-responsive regulators. Results reveal that our method not only reconstructs the potential global protection mechanisms under various environmental stresses but also presents a set of reported specific stress-responsive regulators (i.e., Aft2, Hsf1, Msn2, Msn4, Skn7 and Yap1) as well as a set of inferred specific/general stress-responsive regulators that may provide new guidance for further experiments on yeast cells’ adaption to environmental stimuli. Though we only make a study on the yeast S. cerevisiae, our method can be broadly applied to all species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alon, U. 2007. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC, New York.

    Google Scholar 

  2. Blaiseau, P.L., Lesuisse, E., Camadro, J.M. 2001. Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. J Biol Chem 276, 34221–6.

    Article  CAS  PubMed  Google Scholar 

  3. Causton, H.C., Ren, B., Koh, S.S. et al. 2001. Remodeling of yeast genome expression in response to environmental changes. Molecular Biology of the Cell 12, 323–337.

    CAS  PubMed  Google Scholar 

  4. Chen, H.C., Lee, H.C., Lin, T.Y. et al. 2004. Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics 20, 1914–1927.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, K.C., Wang, T.Y., Tseng, H.H. et al. 2005. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 21, 2883–2890.

    Article  CAS  PubMed  Google Scholar 

  6. De Nadal, E., Zapater, M., Alepuz, P.M. et al. 2004. The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427, 370–374.

    Article  PubMed  Google Scholar 

  7. Draper, N.P., Smith, H. 1998. Applied Regression Analysis. Wiley, New York.

    Google Scholar 

  8. Estruch, F. 2000. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiology Reviews 24, 469–486.

    Article  CAS  PubMed  Google Scholar 

  9. Gasch, A.P., Spellman, P.T., Kao, C.M. et al. 2000. Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell 11, 4241–4257.

    CAS  PubMed  Google Scholar 

  10. Hahn, J.S., Hu, Z.Z., Thiele, D.J. et al. 2004. Genomewide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24, 5249–56.

    Article  CAS  PubMed  Google Scholar 

  11. Harbison, C.T., Gordon, D.B., Lee, T.I. et al. 2004. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104.

    Article  CAS  PubMed  Google Scholar 

  12. Hocking, R.R. 1976. The analysis and selection of variables in linear regression. Biometrics 32, 1–49.

    Article  Google Scholar 

  13. Hurvich, C.M., Tsai, C.L. 1989. Regression and time series model selection in small samples. Biometrika 76, 297–307.

    Article  Google Scholar 

  14. Iyer, V.R., Horak, C.E., Scafe, C.S. et al. 2001. Genomic binding sites of the yeast cell-cycle transcription factors of SBF and MBF. Nature 409, 533–538.

    Article  CAS  PubMed  Google Scholar 

  15. Jamieson, D.J. 1998. Oxidative Stress Responses of the Yeast Saccharomyces crevisiae. Yeast 14, 1511–1527.

    Article  CAS  PubMed  Google Scholar 

  16. Johansson, R. 1993. System modeling and identification. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  17. Lee, T.I., Rinaldi, N.J., Robert, F. et al. 2002. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804.

    Article  CAS  PubMed  Google Scholar 

  18. Martínez-Pastor, M.T., Marchler, G., Schüller, C.et al. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15, 2227–2235.

    PubMed  Google Scholar 

  19. Michael, J.B., Jason, D.L. 2004. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83, 349–360.

    Article  Google Scholar 

  20. Morgan, B.A., Banks, G.R., Toone, W.M., Raitt, D., Kuge, S., Johnston, L.H. 1997. The Skn7 Response Regulator Controls Gene Expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J 16, 1035–1044.

    Article  CAS  PubMed  Google Scholar 

  21. Raitt, D.C., Johnson, A.L., Erkine, A.M., Makino, K., Morgan, B., Gross, D.S., Johnston, L.H. 2000. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol Biol Cell 1, 2335–2347.

    Google Scholar 

  22. Ren, B., Robert, F., Wyrick, J.J. et al. 2000. Genomewide location and function of DNA binding proteins. Science 290, 2306–2309.

    Article  CAS  PubMed  Google Scholar 

  23. Rep, M., Reiser, V., Gartner, U. et al. 1999. Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19, 5474–85.

    CAS  PubMed  Google Scholar 

  24. Rodrigues-Pousada, C.A., Nevitt, T., Menezes, R. et al. 2004. Yeast activator proteins and stress response: an overview. FEBS Letters 567, 80–85.

    Article  CAS  PubMed  Google Scholar 

  25. Ruis, H., Schüller, C. 1995. Stress signaling in yeast. Bioessays 17, 959–965.

    Article  CAS  PubMed  Google Scholar 

  26. Schmitt, A.P., McEntee, K. 1996. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of themultistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci 93, 5777–82.

    Article  CAS  PubMed  Google Scholar 

  27. Seber, G.A., Lee, A.J. 2003. Linear Regression Analysis. Wiley-Interscience, New York.

    Google Scholar 

  28. Segal, E., Shapira, M., Regev, A. et al. 2003. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature genetics 34, 166–176.

    Article  CAS  PubMed  Google Scholar 

  29. Sugiyama, K., Izawa, S., Inoue, Y. 2000. The Yap1pdependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 275, 15535–15540.

    Article  CAS  PubMed  Google Scholar 

  30. Uemura, H., Jigami, Y. 1992. Role of GCR2 in transcriptional activation of yeast glycolytic genes. Mol Cell Biol 12, 3834–42.

    CAS  PubMed  Google Scholar 

  31. Wu, W.S., Li, W.H., Chen, B.S. 2006. Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC Bioinformatics 7, 421–435.

    Article  PubMed  Google Scholar 

  32. Yamamoto, A., Ueda, J., Yamamoto, N. et al. 2007. Role of Heat Shock Transcription Factor in Saccharomyces cerevisiae Oxidative Stress Response. Eukaryotic Cell 6, 1373–1379.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor-Sen Chen.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s12539-009-0018-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Li, F. & Chen, BS. Cross-talks of sensory transcription networks in response to various environmental stresses. Interdiscip Sci Comput Life Sci 1, 46–54 (2009). https://doi.org/10.1007/s12539-008-0018-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-008-0018-1

Key words

Navigation