Skip to main content
Log in

Adaptive evolving strategy for dextrous robotic manipulation

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

A robot task can be represented as a set of trajectories conformed by a sequence of poses. In this way it is possible to teach a mobile robot to accomplish a manipulation task, and also to reproduce it. Nevertheless robot navigation may normally introduce inaccuracies in localization due to natural events as wheel-slides, causing a mismatch between the end-effector and the objects or tools the robot is supposed to interact with. We propose an algorithm for adapting manipulation trajectories for different locations. The adaptation is achieved by optimizing in position, orientation and energy consumption. The approach is built over the basis of Evolution Strategies, and only uses forward kinematics permitting to avoid all the inconveniences that inverse kinematics imply, as well as convergence problems in singular kinematic configurations. Manipulation paths generated with this algorithm can achieve optimal performance, sometimes even improving original path smoothness. Experimental results are presented to verify the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arismendi C, Gómez JV, Garrido S, Moreno L (2012) Adaptive evolution strategy for robotic manipulation. In: 2012 IEEE conference on evolving and adaptive intelligent systems. IEEE, pp 29–34. doi:10.1109/EAIS.2012.6232800

  • Bao-Liang L, Ito K (1995) Regularization of inverse kinematics for redundant manipulators using neural network inversions. In: Proceedings of ICNN’95-international conference on neural networks. IEEE, pp 2726–2731. doi:10.1109/ICNN.1995.488161

  • Bertram D, Kuffner J, Dillmann R, Asfour T (2006) An integrated approach to inverse kinematics and path planning for redundant manipulators. In: Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006, IEEE, pp 1874–1879. doi:10.1109/ROBOT.2006.1641979

  • Blanco D, Ansari SA, Castejón C, López Boada B, Moreno LE (2005) MANFRED: Robot Antropomórfico De Servicio Fiable Y Seguro para operar En Entornos Humanos. Revista Iberoamericana de Ingeniería Mecánica 9(3):33–48

    Google Scholar 

  • Borboni A (2001) Solution of the inverse kinematic problem of a serial manipulator by a fuzzy algorithm. IEEE. doi:10.1109/FUZZ.2001.1007317

  • Chiaverini S, Egeland O, Kanestrom R (1991) Achieving user-defined accuracy with damped least-squares inverse kinematics. IEEE. doi:10.1109/ICAR.1991.240676

  • Datoussaid S, Verlinden O, Conti C (2002) Application of evolutionary strategies to optimal design of multibody systems. Multibody Syst Dyn 8(4):393–408. doi:10.1023/A:1021101912826

    Article  MATH  Google Scholar 

  • Denavit J, Hartenberg R (1955) A kinematic notation for lower-pair mechanisms based on matrices. J Appl Mech 23:215–221

    MathSciNet  Google Scholar 

  • Goldenberg A, Benhabib B, Fenton R (1985) A complete generalized solution to the inverse kinematics of robots. IEEE J Robot Autom 1(1):14–20

    Article  Google Scholar 

  • González C, Blanco D, Moreno L (2009) Optimum robot manipulator path generation using Differential Evolution. In: IEEE congress on evolutionary computation, CEC. doi:10.1109/CEC.2009.4983366

  • Guez A, Ahmad Z (1988) Solution to the inverse kinematics problem in robotics by neural networks. IEEE. doi:10.1109/ICNN.1988.23979

  • Gupta K, Kazerounian K (1985) Improved numerical solutions of inverse kinematics of robots. In: IEEE international conference on robotics and automation proceedings 1985, pp 743–748

  • Huapeng W, Handroos H (2000) Utilization of differential evolution in inverse kinematics solution of a parallel redundant manipulator. In: KES’2000. Proceedings of the fourth international conference on knowledge-based intelligent engineering systems and allied technologies (Cat. No.00TH8516). IEEE, pp 812–815. doi:10.1109/KES.2000.884170

  • Kim SW, Lee JJ, Sugisaka M (1993) Inverse kinematics solution based on fuzzy logic for redundant manipulators. IEEE. doi:10.1109/IROS.1993.583249

  • Kumbla K, Jamshidi M (1994) Control of robotic manipulator using fuzzy logic. IEEE. doi:10.1109/FUZZY.1994.343731

  • Laplante PA (2004) Real-time systems design and analysis, 3rd edit edn. Wiley-IEEE, USA

  • Mayorga R, Wong A, Milano N (1992) A fast damped least-squares solution to manipulator inverse kinematics and singularities prevention. In: Proceedings of the 1992 IEEE/RSJ international conference on intelligent robots and systems, 1992, pp 1177–1184

  • Morris AS, Mansor A (1997) Finding the inverse kinematics of manipulator arm using artificial neural network with lookup table. Robotica 15:617–625

    Article  Google Scholar 

  • Oyama E, Agah A, Maeda T (2001) Inverse kinematics learning by modular architecture neural networks with performance prediction networks. IEEE. doi:10.1109/ROBOT.2001.932681

  • Parker J, Khoogar A, Goldberg D (1989) Inverse kinematics of redundant robots using genetic algorithms. IEEE Computer Society Press. doi:10.1109/ROBOT.1989.100000

  • Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Natural computing series. Springer, Berlin

    Google Scholar 

  • Schwefel HP (1981) Numerical optimization of computer models. Wiley, London

    MATH  Google Scholar 

  • Shen W, Gu J, Milios EE (2006) Self-configuration fuzzy system for inverse kinematics of robot manipulators. IEEE. doi:10.1109/NAFIPS.2006.365856

  • Tabandeh S, Clark C, Melek W (2006) A genetic algorithm approach to solve for multiple solutions of inverse kinematics using adaptive niching and clustering. In: IEEE congress on evolutionary computation, 2006. CEC 2006, pp 1815–1822. doi:10.1109/CEC.2006.1688527

  • Tejomurtula S, Kak S (1999) Inverse kinematics in robotics using neural networks. Inf Sci 116(2–4):147–164. doi:10.1016/S0020-0255(98)10098-1

    Article  MATH  MathSciNet  Google Scholar 

  • Thiang H, Pangaldus R (2009) Artificial neural network with steepest descent backpropagation training algorithm for modeling inverse kinematics of manipulator. World Acad Sci Eng Technol (36):672–675

  • Vande Weghe M, Ferguson D, Srinivasa SS (2007) Randomized path planning for redundant manipulators without inverse kinematics. In: 2007 7th IEEE-RAS international conference on humanoid robots, pp 477–482. doi:10.1109/ICHR.2007.4813913

  • Wang LC, Chen C (1991) A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Trans Robot Autom 7(4):489–499. doi:10.1109/70.86079

    Article  Google Scholar 

  • Xu H, Collins JJ (2009) Estimating the odometry error of a mobile robot by neural networks. IEEE. doi:10.1109/ICMLA.2009.96

  • Yang M, Lu G, Li J (2001) An inverse kinematics solution for manipulators based on fuzzy logic. IEEE. doi:10.1109/ICII.2001.983851

Download references

Acknowledgments

This work is funded by the project number DPI2010-17772 founded by the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Arismendi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arismendi, C., Álvarez, D., Garrido, S. et al. Adaptive evolving strategy for dextrous robotic manipulation. Evolving Systems 5, 65–72 (2014). https://doi.org/10.1007/s12530-013-9085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-013-9085-6

Keywords

Navigation