Skip to main content
Log in

Population genetic patterns of the solitary tunicate, Molgula manhattensis, in invaded Chinese coasts: large-scale homogeneity but fine-scale heterogeneity

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Frequent anthropogenic activities and rapid microevolution associated with rapidly changing environments have complicated the population genetic patterns of invasive species in invaded ranges. In order to deeply understand the mechanisms of invasion success, it is crucial to illuminate population genetic patterns at varied geographical scales in invaded ranges, as well as potential influential factors contributing to observed patterns. In this study, we used both the mitochondrial cytochrome c oxidase subunit I (COI) gene and nuclear microsatellites to investigate the population genetic patterns of a hermaphroditic solitary tunicate, Molgula manhattensis, in invaded Chinese coasts. Our results showed a low level of genetic diversity based on both types of genetic markers. Multiple analyses exhibited a high level of population genetic homogeneity across a wide geographical range. Interestingly, we detected significant population genetic structure at fine geographical scales, particularly for two populations sampled from the Bohai Sea (Laoting and Laizhou). The complex genetic patterns observed in this study, together with multiple putative factors responsible for such patterns, are expected to help understand the invasion success and dispersal dynamics of M. manhattensis along Chinese coasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almojil D, Arias MC, Beasley RR et al (2016) Microsatellite records for volume 8, issue 2. Conserv Genet Resour 8(2):169–196

    Article  Google Scholar 

  • Anderson RS (1971) Cellular responses to foreign bodies in the tunicate Molgula manhattensis (DeKay). Biol Bull 141:91–98

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la ge´ne´tique des populations. Laboratoire Ge´nome, Populations, Interactions. Universite´ deMontpellier, Montpellier

  • Bock DG, Zhan A, Lejeusne C et al (2011) Looking at both sides of the invasion: patterns of colonization in the violet tunicate Botrylloides violaceus. Mol Ecol 20:503–516

    Article  CAS  Google Scholar 

  • Caputi L, Andreakis N, Mastrototaro F et al (2007) Cryptic speciation in a model invertebrate chordate. Proc Natl Acad Sci U S A 104:9364–9369

    Article  Google Scholar 

  • Carlton JT, Geller JB (1991) Ecological roulette: the global transport of nonindigenous marine organisms. Chem Phys Lett 179:53

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

  • Cohen AN, Harris LH, Bingham BL et al (2005) Rapid assessment survey for exotic organisms in southern California bays and harbors, and abundance in port and non-port areas. Biol Invasions 7:995–1002

    Article  Google Scholar 

  • Colautti RI, Lau JA (2015) Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol 24:1999–2017

    Article  Google Scholar 

  • Colautti RI, Manca M, Viljanen M et al (2005) Invasion genetics of the Eurasian spiny waterflea: evidence for bottlenecks and gene flow using microsatellites. Mol Ecol 14:1869–1879

    Article  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

  • Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000

  • Darling JA, Folino-Rorem NC (2009) Genetic analysis across different spatial scales reveals multiple dispersal mechanisms for the invasive hydrozoan Cordylophora in the Great Lakes. Mol Ecol 18:4827–4840

    Article  Google Scholar 

  • Darling JA, Bagley MJ, Roman JO et al (2008) Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus. Mol Ecol 17:4992–5007

    Article  CAS  Google Scholar 

  • Dijkstra J, Harris LG, Westerman E (2007) Distribution and long-term temporal patterns of four invasive colonial ascidians in the Gulf of Maine. J Exp Mar Bio Ecol 342:61–68

    Article  Google Scholar 

  • Dupont L, Viard F, David P, Bishop JDD (2007) Combined effects of bottlenecks and selfing in populations of Corella eumyota, a recently introduced sea squirt in the English Channel. Divers Distrib 13:808–817

    Article  Google Scholar 

  • Dupont L, Viard F, Dowell MJ et al (2009) Fine- and regional-scale genetic structure of the exotic ascidian Styela clava (Tunicata) in southwest England, 50 years after its introduction. Mol Ecol 18:442–453

    Article  CAS  Google Scholar 

  • Dupont L, Viard F, Davis MH et al (2010) Pathways of spread of the introduced ascidian Styela clava (Tunicata) in northern Europe, as revealed by microsatellite markers. Biol Invasions 12:2707–2721

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

  • Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Ghabooli S, Shiganova TA, Zhan A et al (2011) Multiple introductions and invasion pathways for the invasive ctenophore Mnemiopsis leidyi in Eurasia. Biol Invasions 13:679–690

    Article  Google Scholar 

  • Goldstien SJ, Schiel DR, Gemmell NJ (2010) Regional connectivity and coastal expansion: differentiating pre-border and post-border vectors for the invasive tunicate Styela clava. Mol Ecol 19:874–885

    Article  CAS  Google Scholar 

  • Goudet J (2002) FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices Version 2.9.3.2. Available from http:// www2.unil.ch/popgen/softwares/fstat.htm

  • Haydar D, Hoarau G, Olsen JL et al (2011) Introduced or glacial relict? Phylogeography of the cryptogenic tunicate Molgula manhattensis (Ascidiacea, Pleurogona). Divers Distrib 17:68–80

    Article  Google Scholar 

  • Hewitt CL, Campbell ML, Thresher RE et al (2004) Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Mar Biol 144(1):183–202

  • Huang ZG (1994) Marine species and their distributions in China’s seas. China Ocean Press, Beijing

    Google Scholar 

  • Hudson J, Viard F, Roby C et al (2016) Anthropogenic transport of species across native ranges: unpredictable genetic and evolutionary consequences. Biol Lett 12(10):20160620

    Article  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46(1):10–18

    Article  Google Scholar 

  • Kelly RP, Palumbi SR (2010) Genetic structure among 50 species of the northeastern pacific rocky intertidal community. PLoS One 5(1):e8594

    Article  Google Scholar 

  • Kolbe JJ, Glor RE, Rodríguez Schettino L et al (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181

    Article  CAS  Google Scholar 

  • Kyle CJ, Boulding EG (2000) Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Mar Biol 137:835–845

    Article  CAS  Google Scholar 

  • Lambert G (2003) New records of ascidians from the NE Pacific: a new species of Trididemnum, range extension and redescription of Aplidiopsis pannosum (Ritter, 1899) including its larva, and several non-indigenous species. Zoosystema 25:665–679

    Google Scholar 

  • Lambert CC, Lambert G (1998) Non-indigenous ascidians in southern California harbors and marinas. Mar Biol 130:675–688

    Article  Google Scholar 

  • Lee HJ, Boulding EG (2009) Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: the effect of mode of larval development on variation at one mitochondrial and two nuclear DNA markers. Mol Ecol 18:2166–2184

    Google Scholar 

  • Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46(3):282–297

    Article  CAS  Google Scholar 

  • Lin Y, Gao Z, Zhan A (2015) Introduction and use of non-native species for aquaculture in China: status, risks and management solutions. Rev Aquac 7:28–58

    Article  Google Scholar 

  • Locke A (2009) A screening procedure for potential tunicate invaders of Atlantic Canada. Aquat Invasions 4:71–79

    Article  Google Scholar 

  • Lockwood J, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

  • Luttikhuizen PC, Drent J, Baker AJ (2003) Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 12:2215–2229

    Article  CAS  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM et al (2000) Issues in ecology. Bull Ecol Soc Am 86:249–250

    Google Scholar 

  • Morgan TH (1942) Cross-and self-fertilization in the ascidian Molgula manhattensis. Biol Bull 82:172–177

    Article  Google Scholar 

  • Nosil P, Funk DJ, Ortiz-Barrientos D (2009) Divergent selection and heterogeneous genomic divergence. Mol Ecol 18(3):375–402

  • Osman RW, Whitlatch RB (1995) The influence of resident adults on larval settlement: experiments with four species of ascidians. J Exp Mar Bio Ecol 190:199–220

    Article  Google Scholar 

  • Otsuka CM, Dauer DM (1982) Fouling community dynamics in Lynnhaven Bay, Virginia. Estuar Coast 5(1):10–22

  • Paolucci EM, Sardiña P, Sylvester F et al (2014) Morphological and genetic variability in an alien invasive mussel across an environmental gradient in South America. Limnol Oceanogr 59:400–412

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure usingmultilocus genotype data. Genetics 155:945–959

  • Pu C, Zhan A (2017) Epigenetic divergence of key genes associated with water temperature and salinity in a highly invasive model ascidian. Biol Invasions 1–14

  • Pyo J, Lee T, Shin S (2012) Two newly recorded invasive alien ascidians (Chordata, Tunicata, Ascidiacea) based on morphological and molecular phylogenetic analysis in Korea. Zootaxa 3368:211–228

    Google Scholar 

  • Raymond ML, Rousset F (1995) GenePop (version 3.4): population genetics software for exact test and ecumenicism. J Hered 86:248–249

  • Rice RW (1989) Analyzing tables of statistical tests. Evolution 43:223–225

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

  • Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

  • Shaw PW, Arkhipkin AI, Al-Khairulla H (2004) Genetic structuring of Patagonian toothfish populations in the Southwest Atlantic Ocean: the effect of the Antarctic polar front and deep-water troughs as barriers to genetic exchange. Mol Ecol 13:3293–3303

    Article  CAS  Google Scholar 

  • Sheets EA, Cohen CS, Ruiz GM et al (2016) Investigating the widespread introduction of a tropical marine fouling species. Ecol Evol 6:2453–2471

    Article  Google Scholar 

  • Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  Google Scholar 

  • Sivasundar A, Palumbi SR (2010) Life history, ecology and the biogeography of strong genetic breaks among 15 species of Pacific rockfish, Sebastes. Mar Biol 157:1433–1452

    Article  Google Scholar 

  • Stoner DS, Ben-Shlomo R, Rinkevich B, Weissman IL (2002) Genetic variability of Botryllus schlosseri invasions to the east and west coasts of the USA. Mar Ecol Prog Ser 243:93–100

    Article  Google Scholar 

  • Tokioka T, Kado Y (1972) The occurrence of Molgula manhattensis (De Kay) in brackish water near Hiroshima, Japan. Publ Seto Mar Biol Lab 21:21–29

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

  • Voisin M, Engel CR, Viard F (2005) Differential shuffling of native genetic diversity across introduced regions in a brown alga: aquaculture vs. maritime traffic effects. Proc Natl Acad Sci U S A 102:5432–5437

    Article  CAS  Google Scholar 

  • Waters JM, Dijkstra LH, Wallis GP (2000) Biogeography of a southern hemisphere freshwater fish: how important is marine dispersal? Mol Ecol 9:1815–1821

    Article  CAS  Google Scholar 

  • Zhan A, MacIsaac HJ, Cristescu ME (2010) Invasion genetics of the Ciona intestinalis species complex: from regional endemism to global homogeneity. Mol Ecol 19:4678–4694

    Article  CAS  Google Scholar 

  • Zhan A, Darling JA, Bock DG et al (2012a) Complex genetic patterns in closely related colonizing invasive species. Ecol Evol 2:1331–1346

    Article  Google Scholar 

  • Zhan A, Perepelizin PV, Ghabooli S et al (2012b) Scale-dependent post-establishment spread and genetic diversity in an invading mollusc in South America. Divers Distrib 18:1042–1055

    Article  Google Scholar 

  • Zhan A, Briski E, Bock DG et al (2015) Ascidians as models for studying invasion success. Mar Biol 162:2449–2470

    Article  Google Scholar 

  • Zheng CX (1988) Ascidians of fouling organisms in the Yellow Sea and Bohai Sea. Acta Zool Sin 34(2):180–187 (in Chinese with English abstract)

    Google Scholar 

  • Zheng CX (1995) Species diversity of ascidian in the coastal China seas. Biodivers Sci 3(4):201–205 (in Chinese with English abstract)

    Google Scholar 

  • Zvyagintsev AY, Sanamyan KE, Koryakova MD (2003) The introduction of the ascidian Molgula manhattensis (De Kay, 1843) into Peter the Great Bay (Sea of Japan). Sess Org 20:7–10

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31272665, 31622011) and 100 Talents Program of the Chinese Academy of Sciences to AZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aibin Zhan.

Additional information

Communicated by K. Kocot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, S., Lin, Y. et al. Population genetic patterns of the solitary tunicate, Molgula manhattensis, in invaded Chinese coasts: large-scale homogeneity but fine-scale heterogeneity. Mar Biodiv 48, 2137–2149 (2018). https://doi.org/10.1007/s12526-017-0743-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-017-0743-y

Keywords

Navigation