Skip to main content
Log in

Detection of Crevasses in Siachen Glacier Using Remote Sensing Satellite Imageries

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Snow covered crevasses in the Siachen glacier (Karakoram Range) cause great danger during glacier movement, and the knowledge of their spatial distribution is important for the safe travel. In the present study, crevasses in the Siachen glacier have been detected and further categorized as permanent open/hidden and seasonal open/hidden using a combination of optical (Landsat-8 and Sentinel-2) and microwave (ALOS-2) satellite data. The study is carried out for the year 2018. Initially, the locations of crevasses are manually marked using ALOS-2 data and further, their categorization in open and hidden is done using Sentinel-2 data. Apart from manual marking, the band ratio method is applied on Landsat-8 data to detect the permanent open crevasses in an automatic manner. Gray Level Co-occurrence Matrix (GLCM) technique has also been successfully attempted for the automatic classification of the crevasse and non-crevasse zones. The open crevasse locations using band ratioing are compared with manually marked and a good correlation is found having an accuracy of ~ 93%.  A total of 140 crevasse zones have been found within the study area, with 32% as permanent open, 29% as permanent hidden, and 39% as seasonal open/hidden. Manual digitization is done for estimating crevasse dimension (length and width) as this is important input required before the start of any movement. The study reveals that the highly varying nature of crevasses in terms of changes from hidden to open in lower altitude regions of the glacier is mainly observed between July and September. The present methodology of crevasse detection and categorization leads to crevasse information system, which will be used in future to monitor the opening and closing of crevasses in the Siachen glacier on regular basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agarwal, R., Sur, K., & Rajawat, A. S. (2020). Accuracy assessment of the CARTOSAT DEM using robust statistical measures. Modeling Earth Systems and Environment, 6, 1–8. https://doi.org/10.1007/s40808-019-00694-9

    Article  Google Scholar 

  • Anderson, G. P., Pukall, B., Allred, C. L., Jeong, L. S., Hoke, M., Chetwynd, J. H., Matthew, M. W. (1999). FLAASH and MODTRAN4: state-of-the-art atmospheric correction for hyperspectral data. In IEEE Aerospace Conference. Proceedings (Cat. No. 99TH8403). https://doi.org/10.1109/AERO.1999.792088

  • ALOS-2/PALSAR-2 Level 1.1/1.5/2.1/3.1 CEOS SAR Product Format Description. Japan Aerospace Exploration Agency (JAXA). May 23 2014.

  • Baig, S., Qazi, W. A., Akhtar, A. M., Waqar, M. M., Ammar, A., Gilani, H., & Mehmood, S. A. (2017). Above ground biomass estimation of dalbergia sissoo forest plantation from dual-polarized ALOS-2 PALSAR data. Canadian Journal of Remote Sensing, 43(3), 297–308. https://doi.org/10.1080/07038992.2017.1330143

    Article  Google Scholar 

  • Barsi, J. A., Barker, J. L., & Schott, J. R. (2003a). An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/IGARSS.2003a

    Article  Google Scholar 

  • Barsi, J. A., Schott, J. R., Palluconi, F. D., Helder, D. L., Hook, S. J., Markham, B. L., et al. (2003b). Landsat TM and ETM thermal band calibration. Canadian Journal of Remote Sensing, 29(2), 141–153. https://doi.org/10.5589/m02-087

    Article  Google Scholar 

  • Bhambri, R., & Bolch, T. (2009). Glacier mapping: A review with special reference to the Indian Himalayas. Progress in Physical Geography, 33(5), 672704. https://doi.org/10.1177/0309133309348

    Article  Google Scholar 

  • Bhardwaj, A., Sam, L., Singh, S., & Kumar, R. (2016). Automated detection and temporal monitoring of crevasses using remote sensing and their implications for glacier dynamics. Annals of Glaciology, 57(71), 81–89. https://doi.org/10.3189/2016AoG71A496

    Article  Google Scholar 

  • Bhardwaj, A., Joshi, P. K., Sam, L., Singh, M. K., Singh, S., & Kumar, R. (2015). Applicability of Landsat 8 data for characterizing glacier facies and supraglacial debris. International Journal of Applied Earth Observation and Geoinformation, 38, 51–64. https://doi.org/10.1016/j.jag.2014.12.011

    Article  Google Scholar 

  • Colgan, W., Rajaram, H., Abdalati, W., McCutchan, C., Mottram, R., Moussavi, M. S., & Grigsby, S. (2016). Glacier crevasses: Observations, models, and mass balance implications. Reviews of Geophysics, 54, 119–161. https://doi.org/10.1002/2015RG000504

    Article  Google Scholar 

  • Cooley, T., Anderson, G. P., Felde, G. W., Hoke, M. L., Ratkowski, A. J., Chetwynd, J. H., et al. (2002). FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In 2002 IEEE international geoscience and remote sensing symposium (p. 2). https://doi.org/10.1109/igarss.

  • Datt, P., Srivastava, P. K., Negi, P. S., & Satyawali, P. K. (2008). Surface energy balance of seasonal snow cover for snow melt estimation in N-W Himalaya. Journal of Earth System Science, 117(5), 567–573. https://doi.org/10.1007/s12040-008-0053-7

    Article  Google Scholar 

  • Delaney, A. J., Arcone, S. A., O’Bannon, A., & Wright, J. (2004). Crevasse detection with GPR across the Ross Ice Shelf, Antarctica. In Proceedings of the Tenth International Conference Ground Penetrating Radar, GPR 2004.

  • Florinsky, I. V., & Bliakharskii, D. P. (2019). Detection of crevasses by geomorphometric treatment of data from unmanned aerial surveys. Remote Sensing Letters, 10(4), 323–332. https://doi.org/10.1080/2150704X.2018.1552809

    Article  Google Scholar 

  • Gergan, J. T., Dobhal, D. P., & Kaushik, R. (1999). Ground penetrating radar ice thickness measurements of Dokrianibamak (glacier). Garhwal Himalaya. Current Science, 77(1), 169–173.

    Google Scholar 

  • Giribabu, D., Kumar, P., Mathew, J., Sharma, K. P., & Krishna, Y. V. N. M. (2013). DEM generation using Cartosat-1 stereo data: Issues and complexities in Himalayan terrain. European Journal of Remote Sensing, 46(1), 431–433. https://doi.org/10.5721/EuJRS20134625

    Article  Google Scholar 

  • Groos, A. R., Mayer, C., Smiraglia, C., Diolaiuti, G., & Lambrecht, A. (2017). A first attempt to model region-wide glacier surface mass balances in the Karakoram: Findings and future challenges. Geografia Fisica e Dinamica Quaternaria. https://doi.org/10.4461/GFDQ2017.40.10

    Article  Google Scholar 

  • Haralick, R. M., Dinstein, I., & Shanmugam, K. (1973). Textural Features for Image Classification. IEEE Transactions on Systems. Man and Cybernetics, 3(6), 610–621. https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  • Kumar, A., Negi, H. S., & Kumar, K. (2020). Long-term mass balance modelling (1986–2018) and climate sensitivity of Siachen Glacier. East Karakoram. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-020-08323-0

    Article  Google Scholar 

  • Li, R., Xiao, H., Shijie, L., & Tong, X. (2017). A systematic study of the fracturing of Ronne—Filchner Ice Shelf, Antarctica, using multisource satellite data from 2001 to 2016. 10.5194/tc-2017-178

  • Lin, C., Wu, C. C., Tsogt, K., Ouyang, Y. C., & Chang, C. I. (2015). Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery. Information Processing in Agriculture, 2, 25–36.

    Article  Google Scholar 

  • Lopes, A., Nezry, E., Touzi, R., & Laur, H. (1993). Structure detection and statistical adaptive speckle filtering in SAR images. International Journal of Remote Sensing, 14(9), 1735–1758. https://doi.org/10.1080/01431169308953999

    Article  Google Scholar 

  • Merry, C., & Whillans, I. (1993). Ice-flow features on Ice Stream B, Antarctica, revealed by SPOT HRV imagery. Journal of Glaciology, 39, 515–527.

    Article  Google Scholar 

  • Negi, H. S., Kumar, A., Kanda, N., Thakur, N. K., & Singh, K. K. (2020). Status of glaciers and climate change of East Karakoram in early twenty-first century. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.141914

    Article  Google Scholar 

  • Pralong, A., & Funk, M. (2005). Dynamic damage model of crevasse opening and application to glacier calving. Journal of Geophysical Research, 110, B01309. https://doi.org/10.1029/2004JB003104

    Article  Google Scholar 

  • Qazi, W. A., Emery, W. J., & Fox-Kemper, B. (2014). Computing ocean surface currents over the coastal california current system using 30-min-lag sequential SAR images. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7559–7580. https://doi.org/10.1109/TGRS.2014.2314117

    Article  Google Scholar 

  • Raj, K. B. G., & Fleming, K. (2008). Surface temperature estimation from Landsat ETM data for a part of the Baspa Basin, NW Himalaya, India. Bulletin of Glaciological Research, 25, 16–19.

    Google Scholar 

  • SASE Annual Technical Report. (2017). Snow and Avalanche Study Establishment. Manali.

    Google Scholar 

  • Singh, D. K., Gusain, H. S., Mishra, V. D., & Gupta, N. (2018a). Automated retrieval of Snow/Ice surface broadband albedo in Beas river basin, India using Landsat-8 satellite images and validation with wireless sensor network data. Journal of the Indian Society of Remote Sensing, 47, 33–44. https://doi.org/10.1007/s12524-018-0863-2

    Article  Google Scholar 

  • Singh, D. K., Gusain, H. S., Mishra, V., & Gupta, N. (2018b). Snow cover variability in North-West Himalaya during last decade. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-018-3926-3

    Article  Google Scholar 

  • Singh, D. K., Thakur, P. K., Naithani, B. P., & Kaushik, S. (2020). Quantifying the sensitivity of band ratio methods for clean glacier ice mapping. Spatial Information Research. https://doi.org/10.1007/s41324-020-00352-8

    Article  Google Scholar 

  • Singh, K. K., Negi, H. S., Ganju, A., Kulkarni, A. V., Kumar, A., Mishra, V. D., & Kumar, S. (2013). Crevasses detection in Himalayan glaciers using ground-penetrating radar. Current Science, 105(9), 1288–1295.

    Google Scholar 

  • Taurisano, A., Tronstad, S., Brandt, O., & Kohler, J. (2006). On the use of ground penetrating radar for detecting and reducing crevasse-hazard in Dronning Maud Land, Antarctica. Cold Regions Science and Technology, 45, 166–177. https://doi.org/10.1016/j.coldregions.2006.03.005

    Article  Google Scholar 

  • Urbini, S., Vittuari, L., & Gandolfi, S. (2001). GPR and GPS data integration: Examples of application in Antarctica. Annals of Geophysic, 44, 687–702. https://doi.org/10.4401/ag-3568

    Article  Google Scholar 

  • Williams, R. M., Ray, L. E., Lever, J. H., & Burzynski, A. M. (2014). Crevasse detection in ice sheets using ground penetrating radar and machine learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(12), 4836–4848. https://doi.org/10.1109/JSTARS.2014.2332872

    Article  Google Scholar 

  • Xu, T., Yang, W., Liu, Y., Zhou, C., & Wang, Z. (2011). Crevasse detection in antarctica using ASTER images. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics. https://doi.org/10.1007/978-3-642-21596-4_37

  • Zamora, R. (2007). Crevasse detection in glaciers of southern Chile and Antarctica by means of ground penetrating radar. Glacier Mass Balance Change and Meltwater Discharge. IAHS assembly in Foz do lguacu, 318.

  • Zhang, Y. (2004). Understanding image fusion. Photogrammetric Engineering and Remote Sensing, 70(6), 657–661.

    Google Scholar 

  • Zhou, C. X., & Wang, M. (2008). Ice crevasse detection based on gray level co-occurrence matrix. Chinese Journal of Polar Research, 20(1), 23–30.

    Google Scholar 

  • Zhou, C. X., & Wang, Z. M. (2007). Preliminary study on ice crevasse texture analysis and recognition. In Proc. SPIE The Fifth International Symposium on Multispectral Image Processing & Pattern Recognition (MIPPR (Vol. 6786, p. 6786 4).

  • Zhu, X. X. (2013). A sparse image fusion algorithm with application to Pan-Sharpening. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2827–2836.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, DGRE Chandigarh for constant motivation and support. The authors would like to acknowledge DGRE (erstwhile SASE) personnel for collecting ground data. The Landsat-8 data made available by earth explorer (https://earthexplorer.usgs.gov/) is thankfully acknowledged. The Sentinel-2 data were downloaded from the Copernicus Open Access Hub of the European Union Copernicus Programme. The authors are also thankful to Japan Aerospace Exploration Agency (JAXA) for providing the ALOS-2 data. This work was carried out under the DRDO project 'Him-Parivartan' awarded to SASE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Kant Singh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.K., Singh, D.K., Negi, H.S. et al. Detection of Crevasses in Siachen Glacier Using Remote Sensing Satellite Imageries. J Indian Soc Remote Sens 51, 877–891 (2023). https://doi.org/10.1007/s12524-023-01671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-023-01671-7

Keywords

Navigation