Skip to main content
Log in

Wasteland Characterization and Fragmentation Analysis in Korba District (Chhattisgarh, India): A Study-Based Geospatial Data and Spatial Statistical Approach

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The present study aims to identify the wastelands distribution, fragmentation pattern, and their clusters between 1991 and 2019 in the Korba district of Chhattisgarh. Multi-temporal Landsat satellite data were used to recognize the different classes of wastelands. The landscape fragmentation analysis of wasteland categories was performed through FRAGSTATS v.4.2 in patch analyst. Moran’s I and Getis–Ord (Gi*) statistics were used to identify wasteland clusters and outlier analyses. Most of the wastelands were distributed in the east and north of the district, and there was a decreasing trend observed during the study period. Hotspot and outlier analysis demonstrate the existence of homogeneous and heterogeneous wasteland groups based on their spatial proximity and fragmentation pattern. The present research using satellite-based analysis of wasteland fragments could play a major role in verbalizing strategies for safeguarding native forest areas and degraded wasteland in the Korba district.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Basnyat, B. (2009). Impacts of demographic changes on forests and forestry in Asia and the Pacific. Asia-Pacific Forestry Sector Outlook Study II. Working paper no. APFSOS II/WP/2009/08. http://www.fao.org/3/a-am253e.pdf.

  • Bera, S., & Chatterjee, N. D. (2019). Mapping and monitoring of land use dynamics with their change hotspot in North 24-Parganas district, India: A geospatial-and statistical-based approach. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-019-00601-2

    Article  Google Scholar 

  • Chandramohan, T., & Durbude, D. G. (2002). Estimation of soil erosion potential using universal soil loss equation. Journal of the Indian Society of Remote Sensing, 30(4), 181–190.

    Article  Google Scholar 

  • Contador, J. F. L., Schnabel, S., Gómez Gutiérrez, A., & Fernández, M. P. (2008). Mapping sensitivity to land degradation in Extremadura, SW Spain. Boletín de la Asociación de Geógrafos Españoles, 53, 387–390.

    Google Scholar 

  • Fotheringham, A. S. (2009). The problem of spatial autocorrelation” and local spatial statistics. Geographical Analysis, 41, 398–403.

    Article  Google Scholar 

  • Grunwald, S. (2013). The current state of digital soil mapping and what is next. In J. L. Boetinger, D. W. Howell, A. C. Moore, A. E. Hartemink, & S. Kienst-Brown (Eds.), Digital soil mapping: Bridging research, production and environmental applications (pp. 3–12). Springer.

    Google Scholar 

  • Jain, A. K., Hooda, R. S., Nath, J., & Manchanda, M. L. (1991). Mapping and monitoring of urban landuse of Hisar Town, Haryana using remote sensing techniques. Journal of the Indian Society of Remote Sensing, 19(2), 125–134.

    Article  Google Scholar 

  • Joshi, P. K., Kumar, M., Midha, N., Yanand, V., & Paliwal, A. (2006). Assessing areas deforested by coal mining activities through satellite remote sensing images and GIS in parts of Korba, Chhattisgarh. Journal of the Indian Society of Remote Sensing, 34(4), 415–421.

    Article  Google Scholar 

  • Long, J., & Robertson, C. (2017). Comparing spatial patterns. Geography Compass, 12, 27–41.

    Google Scholar 

  • Midha, N., & Mathur, P. K. (2010). Assessment of forest fragmentation in the conservation priority Dudhwa landscape, India using FRAGSTATS computed class level metrics. Journal of the Indian Society of Remote Sensing (September 2010: Special Issue on Biodiversity and Landscape Ecology), 38, 487–500.

    Google Scholar 

  • MSME-Development Institute, Raipur (Ministry of MSME, Govt. of India). (2016). Brief Industrial Profile of Korba District. http://dcmsme.gov.in/dips/2016-17/Korba.pdf.

  • Mulder V. L., de Bruin S., Schaepman M. E., Mayrc T. R. (2011). The use of remote sensing in soil and terrain mapping — a review. Geoderma, 162 (1–2), 1–19. https://doi.org/10.1016/j.geoderma.2010.12.018

    Article  Google Scholar 

  • National Remote Sensing Centre (NRSC). (2019). Wastelands Atlas of India. Change analysis based on temporal satellite data of 2008–2009 and 2015–2016. https://dolr.gov.in/sites/default/files/Wastelands%20Atlas%20-%20Cover%2C%20-Preface%2C%20Contents%2C%20Project%20Team%2C%20Executive%20Summary%2C%20Introduction%20-%20Result.pdf.

  • Puyravaud, J. P. (2003). Standardizing the calculation of the annual rate of deforestation. Forest Ecology Management, 177, 593–596.

    Article  Google Scholar 

  • Ramachandra, T. V. (2007). Comparative assessment of techniques for bio-resource monitoring using GIS and remote sensing. The ICFAI Journal of Environmental Sciences, 1(2), 2–8.

    Google Scholar 

  • Rawat, K. S., Mishra, S. V., & Singh, S. K. (2018). Integration of earth observation data and spatial approach to delineate and manage aeolian sand-affected wasteland in highly productive lands of Haryana, India. International Journal of Geophysics, 7, 5. https://doi.org/10.1155/2018/2847504

    Article  Google Scholar 

  • Roy, A., & Inamdar, A. B. (2019). Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy. Heliyon, 5(4), e01478.

    Article  Google Scholar 

  • Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., et al. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. https://doi.org/10.1016/j.rse.2014.02.001

    Article  Google Scholar 

  • Sánchez Martín, J. M., Sánchez Rivero, M., & Rengifo Gallego, J. I. (2013). La evaluación del potencial turístico para el desarrollo del turismo rural. Aplicación metodológica sobre la provincia de Cáceres. Geofocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, 13, 99–130.

    Google Scholar 

  • Trivedi, T. P. (2010). Degraded and wastelands of India status and spatial distribution. Directorate of Information and Publications of Agriculture, Indian Council of Agricultural Research, Krishi Anusandhan Bhavan I, Pusa, New Delhi. https://icar.org.in/files/Degraded-and-Wastelands.pdf.

  • Uddin, K., Chaudhary, S., Chettri, N., Kotru, R., Murthy, M., Prasad, R., Ning, W., Man, S., & Krishna, S. (2015). The changing land cover and fragmenting forest on the Roof of the World: A case study in Nepal’s Kailash Sacred Landscape. Landscape and Urban Planning, 141, 1–10.

    Article  Google Scholar 

  • Vogt, P., Riitters, K. H., Estreguil, C., Kozak, J., Wade, T. G., & Wickham, J. D. (2007). Mapping spatial patterns with morphological image processing. Landscape Ecology, 22, 171–177.

    Article  Google Scholar 

  • Wasteland Atlas of India. (2019). Chhattisgarh, wastelands changes 2008–09–2015–16. https://dolr.gov.in/sites/default/files/Chhattisgarh_0.pdf.

Download references

Acknowledgements

Thanks to USGS Earth explorer Community for freely providing satellite data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouri Sankar Bhunia.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Bhunia, G.S. & Shit, P.K. Wasteland Characterization and Fragmentation Analysis in Korba District (Chhattisgarh, India): A Study-Based Geospatial Data and Spatial Statistical Approach. J Indian Soc Remote Sens 50, 701–714 (2022). https://doi.org/10.1007/s12524-021-01490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01490-8

Keywords

Navigation