Skip to main content
Log in

Surface Reflectance Climate Data Records (CDRs) is a Reliable Landsat ETM+ Source to Study Chlorophyll Content in Pecan Orchards

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

We evaluated the relationships among three Landsat Enhanced Thematic Mapper (ETM+) datasets, top-of-atmosphere (TOA) reflectance, surface reflectance climate data records (surface reflectance-CDR) and atmospherically corrected images using Fast Line-of-Sight atmospheric analysis of Spectral Hypercubes model (surface reflectance-FLAASH) and their linkto pecan foliar chlorophyll content(chl-cont). Foliar chlorophyll content as determined with a SPAD meter, and remotely-sensed data were collected from two mature pecan orchards (one grown in a sandy loam and the other in clay loam soil) during the experimental period. Enhanced vegetation index derived from remotely sensed data was correlated to chl-cont. At both orchards, TOA reflectance was significantly lower than surface reflectance within the 550–2400 nm wavelength range. Reflectance from atmospherically corrected images (surface reflectance-CDR and surface reflectance-FLAASH) was similar in the shortwave infrared (SWIR: 1550–1750 and 2080–2350 nm) and statistically different in the visible (350–700 nm). Enhanced vegetation index derived from surface reflectance-CDR and surface reflectance-FLAASH had higher correlation with chl-cont than TOA. Accordingly, surface reflectance is an essential prerequisite for using Landsat ETM+  data and TOA reflectance could lead to miss-/or underestimate chl-cont in pecan orchards. Interestingly, the correlation comparisons (Williams t test) between surface reflectance-CDR and chl-cont was statistically similar to the correlation between chl-cont and commercial atmospheric correction model. Overall, surface reflectance-CDR, which is freely available from the earth explorer portal, is a reliable atmospherically corrected Landsat ETM+ image source to study foliar chlorophyll content in pecan orchards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Broge, N., & Leblanc, E. (2000). Comparing predictive power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.

    Article  Google Scholar 

  • Butson, C., & Fernandes, R. (2004). A consistency analysis of surface reflectance and leaf area index retrieval from overlapping clear-sky Landsat ETM+ imagery. Remote Sensing of Environment, 89, 369–380.

    Article  Google Scholar 

  • Chander, G., Markham, B., & Helder, D. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM + , and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893–903.

    Article  Google Scholar 

  • Chavez, P. (1996). Image-based atmospheric corrections revisited and improved. Photogrammetric Engineering Remote Sensing, 62, 1025–1036.

    Google Scholar 

  • Chrysoulakis, N., Abrams, M., Feidas, H., & Arai, K. (2010). Comparison of atmospheric correction methods using ASTER data for the area of Crete, Greece. International Journal of Remote Sensing, 31, 6347–6385.

    Article  Google Scholar 

  • Cooley, T., Anderson, G., Felde, M., Hoke, A., Ratkowskia, H., Chetwynd, J., et al. (2002). FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. Geoscience and Remote Sensing Symposium, 3, 1414–1418.

    Google Scholar 

  • Daughtry, C., Walthall, C., Kim, M., Colstoun, E., & McMurtrey, J., III. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74, 229–239.

    Article  Google Scholar 

  • Gates, D., Keegan, H., Schleter, J., & Weidner, V. (1965). Spectral properties of plants. Applied Optics, 4(1), 11–20.

    Article  Google Scholar 

  • Gitelson, A., Gritz, Y., & Merzlyak, M. (2003). Relationships between leaf chlorophyll content and spectral reflectance algorithms for non-destructive chlorophyll assessment in higher plants. Journal of Plant Physiology, 160, 271–282.

    Article  Google Scholar 

  • Hardin, J., Smith, M., Weckler, P., & Cheary, B. (2012). In situ measurement of pecan leaf nitrogen concentration using a chlorophyll meter and vis-near infrared multispectral camera. HortScience, 47(7), 955–960.

    Google Scholar 

  • Huang, C., Wei, G., Jie, Y., Xu, J., Zhao, S., Wang, L., et al. (2015). Responses of gas exchange, chlorophyll synthesis and ROS-scavenging systems to salinity stress in two ramie (Boehmeria nivea L.) cultivars. Photosynthetica, 53(3), 455–463.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., & Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.

    Article  Google Scholar 

  • Huete, A., Justice, C., & Liu, H. (1994). Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment, 49, 224–234.

    Article  Google Scholar 

  • Huete, A., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59, 440–451.

    Article  Google Scholar 

  • Irish, R. (1998). Landsat 7 science data user’s handbook. Greenbelt: Goddard Space Flight Center.

    Google Scholar 

  • Jensen, J. (2005). Introductory digital image processing: A remote sensing perspective. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Kross, K., McNairn, H., Lapen, D., Sunohara, M., & Champagne, C. (2015). Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. International Journal of Applied Earth Observation and Geoinformation, 34, 235–248.

    Article  Google Scholar 

  • Laurent, V., Verhoef, W., Clevers, J., & Schaepman, M. (2011). Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models. Remote Sensing of Environment, 115, 1043–1052.

    Article  Google Scholar 

  • López-Serrano, P., Corral-Rivas, J., Díaz-Varela, R., Álvarez-González, J., & López-Sánchez, C. (2016). Evaluation of radiometric and atmospheric correction algorithms for aboveground forest biomass estimation using Landsat 5TM data. Remote Sensing, 369, 1–19.

    Google Scholar 

  • Matthew, M., Adler-Golden, S., Berk, A., Richtsmeier, S., Levine, R., Bernstein, L., et al. (2000). Status of atmospheric correction using a MODTRAN4-based algorithm.SPIE proceedings. Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, 4049, 199–207.

    Article  Google Scholar 

  • Moran, M., Inoue, Y., & Barnes, E. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, 61, 319–346.

    Article  Google Scholar 

  • NAIP. (2011). National agriculture imagery program. http://rgis.unm.edu/#map Accessed December 2, 2016.

  • Othman, Y., Steele, C., VanLeeuwen, D., Heerema, R., Bawazir, S., & Hilaire, R. S. (2014). Remote sensing used to detect moisture status of pecan orchards grown in a desert environment. International Journal of Remote Sensing, 35(3), 949–966.

    Article  Google Scholar 

  • Othman, Y., Steele, C., VanLeeuwen, D., & Hilaire, R. S. (2015). Hyperspectral surface reflectance data used to detect moisture status of pecan orchards during flood irrigation. Journal of the American Society for Horticultural Science, 140(5), 449–458.

    Google Scholar 

  • Percival, G., Keary, I., & Noviss, K. (2008). The potential of a chlorophyll content SPAD meter to quantify nutrient stress in foliar tissue of sycamore (Acer pseudoplatanus), english oak (Quercus robur), and european beech (Fagus sylvatica). Arboriculture & Urban Forestry, 34(2), 89–100.

    Google Scholar 

  • Primicerio, J., Di Gennaro, S., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., et al. (2012). A flexible unmanned aerial vehicle for precision agriculture. Precision Agriculture, 13, 517–523.

    Article  Google Scholar 

  • Ramírez, D., Yactayo, W., Gutiérrez, R., Mares, V., & De Mendiburu, F. (2014). Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Scientia Horticulturae, 168, 202–209.

    Article  Google Scholar 

  • Rouse, J. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730017588.pdf Accessed December 2, 2016.

  • Seelan, S., Laguette, S., Casady, G., & Seielstad, G. (2003). Remote sensing applications for precision agriculture: A learning community approach. Remote Sensing of Environment, 88, 157–169.

    Article  Google Scholar 

  • Song, C., Woodcock, C., Seto, K., Lenney, M., & Macomber, S. (2001). Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sensing of Environment, 75, 230–244.

    Article  Google Scholar 

  • Tebbs, E., Remedios, J., & Harper, D. (2013). Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hyertrophic, saline-alkaline, flamingo lake, using Landsat ETM+. Remote Sensing of Environment, 135, 92–106.

    Article  Google Scholar 

  • USGS. (2015a). USGS Global visualization viewer. http://glovis.usgs.gov/ Accessed December 2, 2016.

  • USGS. (2015b). USGS earth explorer. Accessed December 2, 2016.

  • USGS. (2015c). Landsat satellites relative spectral responses.

  • Vincini, M., Frazzi, E., & D’Alessio, P. (2008). A broad-band leaf chlorophyll index at the canopy scale. Precision Agriculture, 9, 303–319.

    Article  Google Scholar 

  • Weaver, B., & Wuensch, K. (2013). SPSS and SAS programs for comparing Pearson correlations and OLS regression coefficients. Behavior Research Methods, 45, 880–895.

    Article  Google Scholar 

  • Williams, E. (1959). The comparison of regression variables. Journal of the Royal Statistical Society, 21, 396–399.

    Google Scholar 

  • Xiao, X., Zhang, Q., Saleska, S., Hutyra, L., De Camargo, P., Wofsy, S., et al. (2005). Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment, 94, 105–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolston St. Hilaire.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, Y., Steele, C. & St. Hilaire, R. Surface Reflectance Climate Data Records (CDRs) is a Reliable Landsat ETM+ Source to Study Chlorophyll Content in Pecan Orchards. J Indian Soc Remote Sens 46, 211–218 (2018). https://doi.org/10.1007/s12524-017-0690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-017-0690-x

Keywords

Navigation