Skip to main content
Log in

Evaluating environmental equities of urban forest in terms of cooling services using ETM+ and Google data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The urban forest plays an important role in mitigating the urban heat island. However, the cooling effects of different types of urban forest are unclear. In addition, the fairness of the cooling effect of the urban forest has not been discussed. In this study, the land surface temperature (LST) of Changchun City, China was obtained from Landsat ETM+ data and then correlated with detailed urban forest information derived from the high-spatial-resolution Google Maps in order to determine the cooling intensity and cooling distance of different types of urban forest. In addition, the Gini coefficient was used to evaluate the equity of cooling services provided by the urban forest. The results indicated that (1) the total area of urban forest in Changchun City is 106.69 km2 and is composed of attached forest (AF, 45.83 km2), road forest (RF, 23.87 km2), ecological public welfare forest (EF, 23.24 km2) and landscape forest (LF, 13.75 km2); (2) the cooling effect of different types of urban forest varies. The cooling intensity and cooling distance are 3.2 °C and 125 m (LF), 0.2 °C and 150 m (EF) and 0.6 °C and 5 m (AF), and RF had no cooling effect; and (3) the cooling effect of urban forest benefits approximately 760,000 people in Changchun City, and the Gini coefficient of the cooling services of urban forest was 0.29, indicating that the cooling service was reasonable. Therefore, we demonstrated that ETM+ and Google data are a convenient and affordable approach to study the LST on an urban scale, and the Gini coefficient could be a meaningful indicator to evaluate urban ecological services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bao, T., Li, X., Zhang, J., Zhang, Y., & Tian, S. (2016). Assessing the distribution of urban green spaces and its anisotropic cooling distance on urban heat island pattern in Baotou, China. ISPRS International Journal of Geo-Information, 5(2), 12.

    Article  Google Scholar 

  • Boukhabl, M., & Alkam, D. (2012). Impact of vegetation on thermal conditions outside, thermal modeling of urban microclimate, case study: The street of the republic. Biskra Energy Procedia, 18, 73–84.

    Article  Google Scholar 

  • Boyce, J. K., Zwickl, K., & Ash, M. (2016). Measuring environmental inequality. Ecological Economics, 124, 114–123.

    Article  Google Scholar 

  • Byrne, J., Wolch, J., & Zhang, J. (2009). Planning for environmental justice in an urban national park. Journal of Environmental Planning and Management, 52(3), 365–392.

    Article  Google Scholar 

  • Cao, X., Onishi, A., Chen, J., & Imura, H. (2010). Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape and Urban Planning, 96(4), 224–231.

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903.

    Article  Google Scholar 

  • Chang, C. R., & Li, M. H. (2014). Effects of urban parks on the local urban thermal environment. Urban Forestry & Urban Greening, 13(4), 672–681.

    Article  Google Scholar 

  • Chang, C. R., Li, M. H., & Chang, S. D. (2007). A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning, 80(4), 386–395.

    Article  Google Scholar 

  • Cowell, F. (1995). Measuring inequality. New York: Prentice Hall.

    Google Scholar 

  • Das, A. K. (2015). Environmental justice atlas (EJAtlas.org): India reaches the top while mapping the ecological conflicts and environmental injustices. Current Science, 109(12), 2176–2177.

    Google Scholar 

  • Dong, L., Sun, C. Z., Zou, W., & Xi, X. (2014). Assessment and spatial-temporal evolution of water consumption fairness from a water footprint perspective in China. Resources Science, 36(9), 1799–1809.

    Google Scholar 

  • Feyisa, G. L., Dons, K., & Meilby, H. (2014). Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape and Urban Planning, 123, 87–95.

    Article  Google Scholar 

  • Franklin, S. E., & Giles, P. T. (1995). Radiometric processing of aerial and satellite remote-sensing imagery. Computers & Geosciences, 21(3), 413–423.

    Article  Google Scholar 

  • Georgi, J. N., & Dimitriou, D. (2010). The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Building and Environment, 45(6), 1401–1414.

    Article  Google Scholar 

  • Givoni, B. (1991). Impact of planted areas on urban environmental quality: A review. Atmospheric Environment. Part B. Urban Atmosphere, 25(3), 289–299.

    Article  Google Scholar 

  • Groot, L. (2010). Carbon Lorenz curves. Resource and Energy Economics, 32(1), 45–64.

    Article  Google Scholar 

  • He, B. Y., Ding, C., Yang, X. Q., & Liang, S. W. (2011). Recovering of Landsat7 ETM+ SLC-OFF data and its application on water quality retrieval in East Lake in Wuhan. Resources and Environment in the Yangtze Basin, 20(01), 90–95.

    Google Scholar 

  • He, X. Y., Liu, C. F., Chen, W., Guan, Z. J., & Zhao, G. L. (2004). Discussion on urban forest classification. Chinese Journal of Ecology, 23(05), 175–178.

    Google Scholar 

  • Heindl, P., & Kanschik, P. (2016). Ecological sufficiency, individual liberties, and distributive justice: Implications for policy making. Ecological Economics, 126, 42–50.

    Article  Google Scholar 

  • Howard, L. (1833). The climate of London (Vol. I–III). London: Harvey and Dorton.

    Google Scholar 

  • Huang, H. P. (2012). Study on the fairness of resource-environment system of Jiangxi Province based on different methods of Gini coefficient. Acta Ecological Sinica, 32(20), 6431–6439.

    Article  Google Scholar 

  • Jaganmohan, M., Knapp, S., Buchmann, C. M., & Schwarz, N. (2016). The bigger, the better? The influence of urban green space design on cooling effects for residential areas. Journal of Environmental Quality, 45(1), 134–145.

    Article  Google Scholar 

  • Jiménez-Muñoz, J. C., & Sobrino, J. A. (2003). A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, 108(D22), 1–9.

    Article  Google Scholar 

  • Jin, Y. (2006). Analysis of city green space index. Chinese Landscape Architecture, 22(8), 56–60.

    Google Scholar 

  • Kolokotroni, M., Zhang, Y., & Watkins, R. (2007). The London heat island and building cooling design. Solar Energy, 81(1), 102–110.

    Article  Google Scholar 

  • Konisky, D. M. (2016). Environmental justice delayed: Failed promises, hope for the future. Environment: Science and Policy for Sustainable Development, 58(2), 4–15.

    Google Scholar 

  • Krpo, A., Salamanca, F., Martilli, A., & Clappier, A. (2010). On the impact of anthropogenic heat fluxes on the urban boundary layer: A two-dimensional numerical study. Boundary-Layer Meteorology, 136(1), 105–127.

    Article  Google Scholar 

  • Lafortezza, R., Carrus, G., Sanesi, G., & Davies, C. (2009). Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban Forestry & Urban Greening, 8(2), 97–108.

    Article  Google Scholar 

  • Li, Y. Y., Zhang, H., & Kainz, W. (2012). Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. International Journal of Applied Earth Observation and Geoinformation, 19, 127–138.

    Article  Google Scholar 

  • Liu, H. X., Jin, G. X., Wu, J., Sun, P., Liu, C., & Xu, C. Y. (2015). Effects of scale and structure of urban forest in lowering air temperature and increasing humidity in summer in Beijing. Journal of Beijing Forestry University, 37(10), 31–40.

    Google Scholar 

  • Liu, B. B., Li, F. Y., Yu, Q. Q., Yu, Y., & Bi, J. (2009). Study on urban environmental equality of the Yangtze River Delta. Resources and Environment in the Yangtze Basin, 18(12), 1093–1097.

    Google Scholar 

  • Lu, X. H., Jiang, H., Zhang, X. Y., & Jin, J. X. (2016). Relationship between nitrogen deposition and LUCC and its impact on terrestrial ecosystem carbon budgets in China. Science China Earth Sciences, 59(12), 2285–2294.

    Article  Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2002). Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon basin LBA research. International Journal of Remote Sensing, 23(13), 2651–2671.

    Article  Google Scholar 

  • Mackey, C. W., Lee, X., & Smith, R. B. (2012). Remotely sensing the cooling effects of city scale efforts to reduce urban heat island. Building and Environment, 49, 348–358.

    Article  Google Scholar 

  • Mao, K. B., & Qin, Z. H. (2004). The transmission model of atmospheric radiation and the computation of transmittance of MODTRAN. Geomatics & Spatial Information Technology, 27(4), 1–3.

    Google Scholar 

  • McConnachie, M. M., & Shackleton, C. M. (2010). Public green space inequality in small towns in South Africa. Habitat International, 34(2), 244–248.

    Article  Google Scholar 

  • McMichael, A. J., & Woodruff, R. E. (2005). Climate change and human health. Netherlands: Springer.

    Book  Google Scholar 

  • Mihalakakou, G., Santamouris, M., Papanikolaou, N., Cartalis, C., & Tsangrassoulis, A. (2004). Simulation of the urban heat island phenomenon in Mediterranean climates. Pure and Applied Geophysics, 161(2), 429–451.

    Article  Google Scholar 

  • Qin, Z. H., Karnieli, A., & Berliner, P. (2001). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel–Egypt border region. International Journal of Remote Sensing, 22(18), 3719–3746.

    Article  Google Scholar 

  • Qin, Z. H., Li, W. J., Xu, B., Chen, Z. X., & Liu, J. (2004). The estimation of land surface emissivity for Landsat TM6. Remote Sensing for Land & Resources, 16(3), 28–32.

    Google Scholar 

  • Ren, Z. B., Zheng, H. F., He, X. Y., Zhang, D., & Yu, X. Y. (2015). Estimation of the relationship between urban vegetation configuration and land surface temperature with remote sensing. Journal of the Indian Society of Remote Sensing, 43(1), 89–100.

    Article  Google Scholar 

  • Spronken-Smith, R. A., & Oke, T. R. (1998). The thermal regime of urban parks in two cities with different summer climates. International Journal of Remote Sensing, 19(11), 2085–2104.

    Article  Google Scholar 

  • Su, Y. X., Huang, G. Q., Chen, S. X. Z., & Chen, S. S. (2010). The cooling effect of Guangzhou City parks to surrounding environments. Acta Ecological Sinica, 30(18), 4905–4918.

    Google Scholar 

  • Susca, T., Gaffin, S. R., & Dell’Osso, G. R. (2011). Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution, 159(8), 2119–2126.

    Article  Google Scholar 

  • Tang, Z., Zheng, H. F., Ren, Z. B., Cui, M. X., & He, X. Y. (2016). Spatial and temporal changes to urban surface thermal landscape patterns—A case study of Changchun City. Acta Ecological Sinica, 37(10), 1–10.

    Google Scholar 

  • Upmanis, H., Eliasson, I., & Lindqvist, S. (1998). The influence of green areas on nocturnal temperatures in a high latitude city (Göteborg, Sweden). International Journal of Climatology, 18(6), 681–700.

    Article  Google Scholar 

  • Wang, Q. Q., Qin, Z. H., & Wang, F. (2012). Mono-window algorithm for retrieving land surface temperature based on multi-source remote sensing data. Geography and Geo-Information Science, 28(3), 24–26.

    Google Scholar 

  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483.

    Article  Google Scholar 

  • Wu, X. G., Lin, Y. D., Yan, H. B., & Hao, X. Y. (2008). Correlation between ecological effect and structure characteristics of urban green areas. Chinese Journal of Eco-Agriculture, 16(6), 1469–1473.

    Article  Google Scholar 

  • Xian, G., & Crane, M. (2006). An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sensing of Environment, 104(2), 147–156.

    Article  Google Scholar 

  • Xiao, J. Y., Ji, N., Li, X., Yu, L. X., & Ji, F. (2005). Cooling effect of city parks—A case of Shijiazhuang. Journal of Arid Land Resources and Environment, 2, 75–79.

    Google Scholar 

  • Yu, C., & Hien, W. N. (2006). Thermal benefits of city parks. Energy and Buildings, 38(2), 105–120.

    Article  Google Scholar 

  • Zhang, B., Gao, J. X., & Yang, Y. (2014a). The cooling effect of urban green spaces as a contribution to energy-saving and emission-reduction: A case study in Beijing, China. Building and Environment, 76, 37–43.

    Article  Google Scholar 

  • Zhang, H., Xu, H. Q., Li, L., Fan, Y. P., & Fan, Y. P. (2014b). Analysis of the relationship between urban heat island effect and urban expansion in Chengdu, China. Journal of Geo-Information Science, 16(1), 70–78.

    Google Scholar 

  • Zhao, Y., Zhao, Q. J., Cui, S. H., Lin, T., & Yin, K. (2009). Progress in ecological services evaluation of urban forest. Acta Ecological Sinica, 29(12), 6723–6732.

    Google Scholar 

  • Zoulia, I., Santamouris, M., & Dimoudi, A. (2009). Monitoring the effect of urban green areas on the heat island in Athens. Environmental Monitoring and Assessment, 156(1–4), 275–292.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Key projects of Chinese Academy of Science (KFZD-SW-302-03), Foundation for Excellent Young Scholars of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (DLSYQ13004) and Jilin Province Science and Technology Development Plan (20140520146JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyuan He.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Zheng, H., Ren, Z. et al. Evaluating environmental equities of urban forest in terms of cooling services using ETM+ and Google data. J Indian Soc Remote Sens 46, 287–296 (2018). https://doi.org/10.1007/s12524-017-0689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-017-0689-3

Keywords

Navigation