Skip to main content
Log in

Detection of Alteration Minerals Using Hyperion Data Analysis in Lahroud

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The study aims to detect alteration indicative minerals on a part of Hyperion scene in the Lahroud region using the image processing methods. However, it is rarely possible to find actually pure pixels in the mineralogical scale inside the study scenes. This implies the necessity of the identification of sub-pixel materials before classification and mineral mapping using the spectral unmixing algorithms. The Linear Mixture Model (LMM) based standardized hyperspectral processing methodology was employed for this purpose. The necessary pre-processing tasks including the atmospheric and topographic corrections and data quality assessment were also utilized to increase the classification accuracy. The mineralogical and alteration map of the study area was then extracted and evaluated quantitatively with respected to the geological setting of the study area. Despite of the presence of complex facies in the region, the possibility of the applied methodology in the alteration mapping by linear unmixing was proved on Hyperion datasets. The low signal to noise ratio of the Hyperion sensor caused some difficulties but, considering the high cost and consumed time of the field sampling and geochemical studies, the applied method is an advantageous tool for primary steps of the exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad, F. (2012). Pixel Purity Index Algorithm and n-Dimensional Visualization for etm+ Image Analysis: A Case of District Vehari. Global Journal of Human Social Science Arts and Humanities, 12(15), 76–82.

    Google Scholar 

  • Babakan, S., & Oskouei, M. M. (2015). Application of Gibbs Sampling in Efficient Hyperspectral Unmixing Based on the Mixtures of Dirichlet Components. Journal of Applied Remote Sensing, 9(1), 095045–095045. doi:10.1117/1.JRS.9.095045.

    Article  Google Scholar 

  • Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J. (2012). Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354–379. doi:10.1109/jstars.2012.2194696.

  • Borengasser, M. (2015). Hyperspectral remote sensing: Principles and applications (2nd ed., ). Boca Raton: CRC Press.

    Google Scholar 

  • Calagari, A. A. (2003). Stable Isotope (S, O, H and C) Studies of the Phyllic and Potassic–Phyllic Alteration Zones of the Porphyry Copper Deposit at Sungun, East Azarbaijan, Iran. Journal of Asian Earth Sciences, 21(7), 767–780. doi:10.1016/s1367-9120(02)00083-4.

    Article  Google Scholar 

  • Carter, G. A., Lucas, K. L., Blossom, G. A., Lassitter, C. L., Holiday, D. M., Mooneyhan, D. S., Fastring, D. R., Holcombe, T. R., Griffith J., A. (2009). Remote Sensing and Mapping of Tamarisk Along the Colorado River, USA: A Comparative use of Summer-Acquired Hyperion, Thematic Mapper and Quickbird Data. Remote Sensing, 1(3), 318–329. doi:10.3390/rs1030318.

  • Cavalli, R. M., Fusilli, L., Pascucci, S., Pignatti, S., & Santini, F. (2008). Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy). Sensors, 8(5), 3299–3320. doi:10.3390/s8053299.

    Article  Google Scholar 

  • Chabrillat, S., Goetz, A. F. H., Krosley, L., & Olsen, H. W. (2002). Use of Hyperspectral Images in the Identification and Mapping of Expansive Clay Soils and the Role of Spatial Resolution. Remote Sensing of Environment, 82(2–3), 431–445. doi:10.1016/s0034-4257(02)00060-3.

    Article  Google Scholar 

  • Chang, C. I. (2007). Hyperspectral data exploitation: Theory and applications. New Jersey: Wiley.

    Book  Google Scholar 

  • Colby, J. D., & Keating, P. L. (1998). Land Cover Classification Using Landsat TM Imagery in the Tropical Highlands: The Influence of Anisotropic Reflectance. International Journal of Remote Sensing, 19(8), 1479–1500. doi:10.1080/014311698215306.

    Article  Google Scholar 

  • Corner, B. R., Narayanan, R. M., & Reichenbach, S. E. (2003). Noise Estimation in Remote Sensing Imagery Using Data Masking. International Journal of Remote Sensing, 24(4), 689–702. doi:10.1080/01431160210164271.

    Article  Google Scholar 

  • Gao, M.-L., Zhao, W.-J., Gong, Z.-N., Gong, H.-L., Chen, Z., & Tang, X.-M. (2014). Topographic Correction of ZY-3 Satellite Images and its Effects on Estimation of Shrub Leaf Biomass in Mountainous Areas. Remote Sensing, 6(4), 2745–2764. doi:10.3390/rs6042745.

    Article  Google Scholar 

  • Ghandchi, M., Afsharian, A., & Chaichi, Z. (1991). 100000 scale geological map of lahroud sheet. GSI.

  • Ghorbani, M. (2013). Metallogenic and mining provinces, belts and zones of Iran. In The economic geology of Iran (pp. 199–295). Netherlands: Springer.

    Chapter  Google Scholar 

  • Goetz, A. F. H. (2009). Three Decades of Hyperspectral Remote Sensing of the Earth: A Personal View. Remote Sensing of Environment, 113, S5–S16. doi:10.1016/j.rse.2007.12.014.

    Article  Google Scholar 

  • Goodenough, D. G., Dyk, A., Niemann, K. O., Pearlman, J. S., Hao, C., Tian, H., Murdoch, M., West, C. (2003). Processing Hyperion and ali for Forest Classification. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1321–1331. doi:10.1109/tgrs.2003.813214.

  • Griffin, M. K., & Burke, H.-h. K. (2003). Compensation of Hyperspectral Data for Atmospheric Effects. Lincoln Laboratory Journal, 14(1), 29–53.

    Google Scholar 

  • Hruska, R., Mitchell, J., Anderson, M., & Glenn, N. F. (2012). Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle. Remote Sensing, 4(12), 2736–2752. doi:10.3390/rs4092736.

    Article  Google Scholar 

  • Iordache, M.-D., Bioucas-Dias, J. M., & Plaza, A. (2011). Sparse Unmixing of Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing, 49(6), 2014–2039. doi:10.1109/tgrs.2010.2098413.

    Article  Google Scholar 

  • Karimzadeh Somarin, A. (2004). Geochemical Effects of Endoskarn Formation in the Mazraeh Cu-Fe Skarn Deposit in Northwestern Iran. Geochemistry: Exploration, Environment, Analysis, 4(4), 307–315. doi:10.1144/1467-7873/04-209.

    Google Scholar 

  • Keshava, N. (2003). A Survey of Spectral Unmixing Algorithms. Lincoln Laboratory Journal, 14, 55–78.

    Google Scholar 

  • Keshava, N., Kerekes, J., Manolakis, D., & Shaw, G. (2000). An Algorithm Taxonomy for Hyperspectral Unmixing. SPIE Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery 4049, 42-63.

  • Kruse, F. A., & Boardman, J. W. (2000). Characterization and Mapping of Kimberlites and Related Diatremes Using Hyperspectral Remote Sensing. IEEE Conference Aerospace, 3, 299–304. doi:10.1109/AERO.2000.879859.

    Google Scholar 

  • Kruse, F. A., Boardman, J. W., & Huntington, J. F. (2003). Comparison of Airborne Hyperspectral Data and EO-1 Hyperion for Mineral Mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1388–1400. doi:10.1109/TGRS.2003.812908.

    Article  Google Scholar 

  • Malekzadeh Shafaroudi, A., & Karimpour, M. H. (2015). Mineralogic, Fluid Inclusion, and Sulfur Isotope Evidence for the Genesis of Sechangi Lead–Zinc (−Copper) Deposit, Eastern Iran. Journal of African Earth Sciences, 107, 1–14. doi:10.1016/j.jafrearsci.2015.03.015.

    Article  Google Scholar 

  • Manolakis, D., Marden, D., & Shaw, G. A. (2003). Hyperspectral Image Processing for Automatic Target Detection Applications. Lincoln Laboratory Journal, 14, 79–116.

    Google Scholar 

  • Mather, P. M., & Koch, M. (2011). Preprocessing of Remotely-sensed Data. In Computer Processing of Remotely-Sensed Images: An Introduction (4 ed., pp. 87–124). Chichester: Wiley.

  • Mitchell, J. J., & Glenn, N. F. (2009). Subpixel Abundance Estimates in Mixture-Tuned Matched Filtering Classifications of Leafy Spurge (Euphorbia esulaL.). International Journal of Remote Sensing, 30(23), 6099–6119. doi:10.1080/01431160902810620.

    Article  Google Scholar 

  • Molan, Y. E., Refahi, D., & Tarashti, A. H. (2014). Mineral Mapping in the Maherabad Area, Eastern Iran, Using the HyMap Remote Sensing Data. International Journal of Applied Earth Observation and Geoinformation, 27, 117–127. doi:10.1016/j.jag.2013.09.014.

    Article  Google Scholar 

  • Nascimento, J. M. P., & Bioucas-Dias, J. M. (2012). Hyperspectral Unmixing Based on Mixtures of Dirichlet Components. IEEE Transactions on Geoscience and Remote Sensing, 50(3), 863–878. doi:10.1109/tgrs.2011.2163941.

    Article  Google Scholar 

  • Oskouei, M. M. (2010). Independent Component Analysis of Hyperion Data to map Alteration Zones. Journal of Photogrammetry, remote Sensing and Geoinformation Processing (PFG), 3, 179–189. doi:10.1127/1432-8364/2010/0048.

    Google Scholar 

  • Oskouie, M. M., & Busch, W. (2008). A Geostatistically Based Preprocessing Algorithm for Hyperspectral Data Analysis. GIScience & Remote Sensing, 45(3), 356–368. doi:10.2747/1548-1603.45.3.356.

    Article  Google Scholar 

  • Parra, L., Mueller, K. R., Spence, C., Ziehe, A., & Sajda, P. (2000). Unmixing Hyperspectral Data. Advances in Neural Information Processing Systems, 12, 942–948.

    Google Scholar 

  • Riaño D., Chuvieco, E., Salas, J., & Aguado, I. (2003). Assessment of Different Topographic Corrections in Landsat-tm Data for Mapping Vegetation Types. IEEE Transactions on Geoscience and Remote Sensing, 41(5), 1056–1061. doi:10.1109/TGRS.2003.811693.

    Article  Google Scholar 

  • Robila, S. A., & Maciak, L. G. (2006). A Parallel Unmixing Algorithm for Hyperspectral Images. SPIE 6384, Intelligent Robots and Computer Vision XXIV: Algorithms, Techniques, and Active Vision, 63840F. doi:10.1117/12.685655.

  • Sefat, A. A. D. (2007). Application of Hyperspectral Data for Forest Stand Mapping. Iranian Journal Of Natural Resources, 59(4), 831–841.

    Google Scholar 

  • Teillet, P. M., Guindon, B., & Goodenough, D. G. (1982). On the Slope-Aspect Correction of Multispectral Scanner Data. Canadian Journal of Remote Sensing, 8(2), 84–106.

    Article  Google Scholar 

  • Tokola, T., Sarkeala, J., & Van Der Linden, M. (2001). Use of Topographic Correction in Landsat TM-Based Forest Interpretation in Nepal. International Journal of Remote Sensing, 22(4), 551–563. doi:10.1080/01431160050505856.

    Article  Google Scholar 

  • Vanonckelen, S., Lhermitte, S., Balthazar, V., & Van Rompaey, A. (2014). Performance of Atmospheric and Topographic Correction Methods on Landsat Imagery in Mountain Areas. International Journal of Remote Sensing, 35(13), 4952–4972. doi:10.1080/01431161.2014.933280.

    Article  Google Scholar 

  • Vaughan, R. G., Hook, S. J., Calvin, W. M., & Taranik, J. V. (2005). Surface Mineral Mapping at Steamboat Springs, Nevada, USA, with Multi-Wavelength Thermal Infrared Images. Remote Sensing of Environment, 99(1–2), 140–158. doi:10.1016/j.rse.2005.04.030.

    Article  Google Scholar 

  • Wen, X.-P., Yang, X.-F., & Hu, G.-D. (2009). Hyperspectral remote sensing data mining using multiple classifiers combination. In J. Ponce, & A. Karahoca (Eds.), Data mining and knowledge discovery in real life applications (pp. 129–140). Vienna, Austria: In-Teh.

    Google Scholar 

  • Wu, J., Bauer, M. E., Wang, D., & Manson, S. M. (2008). A Comparison of Illumination Geometry-Based Methods for Topographic Correction of QuickBird Images of an Undulant Area. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2), 223–236. doi:10.1016/j.isprsjprs.2007.08.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid M. Oskouei.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oskouei, M.M., Babakan, S. Detection of Alteration Minerals Using Hyperion Data Analysis in Lahroud. J Indian Soc Remote Sens 44, 713–721 (2016). https://doi.org/10.1007/s12524-016-0549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0549-6

Keywords

Navigation