Skip to main content
Log in

Scrutinising MODIS and GIMMS Vegetation Indices for Extracting Growth Rhythm of Natural Vegetation in India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Satellite derived vegetation vigour has been successfully used for various environmental modeling since 1972. However, extraction of reliable annual growth information about natural vegetation (i.e., phenology) has been of recent interest due to their important role in many global models and free availability of time-series satellite data. In this study, usability of Moderate Resolution Imaging Spectro-radiometer (MODIS) and Global Inventory Modelling and Mapping Studies (GIMMS) based products in extracting phenology information about evergreen, semi-evergreen, moist deciduous and dry deciduous vegetation in India was explored. The MODIS NDVI and EVI time-series data (MOD13C1: 5.6 km spatial resolution with 16 day temporal resolution—2001 to 2010) and GIMMS NDVI time-series data(8 km spatial resolution with 15 day temporal resolution—2000 to 2006) were used. These three differently derived vegetation indices were analysed to extract and understand the vegetative growth rhythm over different regions of India. Algorithm was developed to derive onset of greenness and end of senescence automatically. The comparative analysis about differences in the results from these products was carried out. Due to dominant noise in the values of NDVI from GIMMS and MODIS during monsoon period the phenology rhythm were wrongly depicted, especially for evergreen and semi-evergreen vegetation in India. Hence, care is needed before using these data sets for understanding vegetative dynamics, biomass cestimation and carbon studies. MODIS EVI based results were truthful and comparable to ground reality. The study reveals spatio-temporal patterns of phenology, rate of greening, rate of senescence, and differences in results from these three products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atkinson, P. M., Dash, J., & Jeganathan, C. (2011). Amazon vegetation greenness as measured by satellite sensors over the last decade. Journal of Geophysical Research Letters, 38, L19105. doi:10.1029/2011GL049118.

    Article  Google Scholar 

  • Atkinson, P. M., Jeganathan, C., Dash, J., & Atzberger, C. (2012). Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment, 123, 400–417.

    Article  Google Scholar 

  • Beck, P. S. A., Atzberger, C., Hogda, K. A., Johansen, B., & Skidmore, A. K. (2006). Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sensing of Environment, 100, 321–334.

    Article  Google Scholar 

  • Bhat, D. M. (1992). Phenology of tree species of tropical moist forest of Uttara Kannada District, Karnataka, India. Journal of Biosciences, 17, 325–352.

    Article  Google Scholar 

  • Boojh, R., & Ramakrishna, P. S. (1983). The growth pattern of two species of Schima. Biotropica, 15, 142–147.

    Article  Google Scholar 

  • Bradshaw, C. J. A., Warkentin, I. G., & Sodhi, N. S. (2009). Urgent preservation of boreal carbon stocks and biodiversity. Trends in Ecology and Evolution, 24, 541–548.

    Article  Google Scholar 

  • Dash, J., Jeganathan, C., & Atkinson, P. M. (2010). The use of MERIS terrestrial chlorophyll index to study spatio-temporal variation in vegetation phenology over India. Remote Sensing of Environment, 114, 1388–1402.

    Article  Google Scholar 

  • Fenshold, R., & Proud, S. R. (2012). Evaluation of Earth Observation based global long term vegetation trends—comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment, 119, 131–147.

    Article  Google Scholar 

  • Ganguly, S., Schull, M. A., Samanta, A., Shabanov, N. V., Milesi, C., Nemani, R. R., Knyazikhin, Y., & Myneni, R. B. (2008). Generating vegetation leaf area index earth system data record from multiple sensors. Part 1:theory. Remote Sensing of Environment, 112, 4333–4343.

    Article  Google Scholar 

  • Goward, S. N., Dey, D. G., Turner, S., & Yang, J. (1993). Objective assessment of the NOAA global vegetation index data product. International Journal of Remote Sensing, 14, 3365–3394.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodríguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213.

    Article  Google Scholar 

  • Jeganathan, C., Ganguly, S., Dash, J., Friedl, M., & Atkinson, P. M. (2010a). Terrestrial vegetation phenology from MODIS and MERIS sensor data. IEEE Transactions Geoscience and Remote Sensing, 2699–2702.

  • Jeganathan, C., Dash, J., & Atkinson, P. M. (2010b). Mapping the phenology of natural vegetation in India using a remotely sensed chlorophyll index. International Journal of Remote Sensing, 31(22), 5777–5796.

    Article  Google Scholar 

  • Jeganathan, C., Dash, J., & Atkinson, P. M. (2010c). Characterising spatial pattern of phenology for the tropical vegetation in India using multi-temporal MERIS remote sensing data. Landscape Ecology, 25, 1125–1141.

    Article  Google Scholar 

  • Jeganathan, C., Hamm, N. A. S., Mukherjee, S., Atkinson, P. M., Raju, P. L. N., & Dadhwal, V. K. (2011). Evaluating a thermal image sharpening model over a mixed agricultural landscape in India. International Journal of Applied Earth Observation and Geoinformation, 13, 178–191.

    Article  Google Scholar 

  • Jeong, S. J., Ho, C. H., Gim, H. J., & Brown, M. E. (2011). Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biology, 17, 2385–2399.

    Article  Google Scholar 

  • Jeyaseelan, A. T., Roy, P. S., & Young, S. S. (2007). Persistent changes in NDVI between 1982 and 2003 over India using AVHRR GIMMS (global inventory modeling and mapping studies) data. International Journal of Remote Sensing, 28, 4927–4946.

    Article  Google Scholar 

  • Jia, G., Epstein, H. E., & Walker, D. A. (2003). Greening of arctic Alaska, 1981–2001. Geophysical Research Letters, 30, 2067. doi:10.1029/2003GL018268.

    Article  Google Scholar 

  • Julien, Y., & Sobrino, J. A. (2009). Global land surface phenology trends from GIMMS database. International Journal of Remote Sensing, 30, 3495–3513.

    Article  Google Scholar 

  • Keeling, C. D., Chin, J. F. S., & Whorf, T. P. (1996). Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146–149.

    Article  Google Scholar 

  • Kidwell, K. B. (1998). Polar orbiter data users’ guide (TIROS-N, NOAA-6, NOAA-7, NOAA8, NOAA-9, NOAA-10, NOAA-11, NOAA-12, NOAA-14). Washington D.C.: National Oceanic and Atmospheric Administration.

    Google Scholar 

  • Kikim, A., & Yadava, P. (2001). Phenology of tree species in subtropical forest of Manipur in north eastern india. Tropical Ecology, 42, 269–276.

    Google Scholar 

  • Kushwaha, C. P., & Singh, K. P. (2008). India needs phenological stations network. Current Science, 95, 832–834.

    Google Scholar 

  • Lotsch, A., Friedl, M. A., Anderson, B. T., & Tucker, C. J. (2003). Coupled vegetation-precipitation variability observed from satellite and climate records. Geophysical Research Letters, 30(14), doi:10.1029/2003GL017506.

  • Mishra, R. K., Upadhyay, V. P., Bal, S., Mohapatra, P. K., & Mohanty, R. C. (2006). Phenology of species of moist deciduous forest sites of Similipal biosphere reserve. Lyonia, 111, 5–17.

    Google Scholar 

  • Murali, K. S., & Sukumar, R. (1994). Reproductive phenology of a tropical dry forest in Mudumalai, Southern India. Journal of Ecology, 82, 759–767.

    Article  Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702.

    Article  Google Scholar 

  • Nayak, R. K., Patel, N. R., & Dadhwal, V. K. (2013). Inter-annual variability and climate control of terrestrial net primary productivity over India. International Journal of Climatology, 33, 132–142.

    Article  Google Scholar 

  • Nemani, R., White, M., Thornton, P., Nishida, K., Reddy, S., Jenkins, J., & Running, S. (2002). Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters, 29(10), 1468. doi:10.1029/2002GL014867.

    Article  Google Scholar 

  • Newton, P. N. (1988). The structure and phenology of a moist deciduous forest in the Central Indian Highlands. Vegetatio, 75, 3–16.

    Article  Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.

    Article  Google Scholar 

  • Patel, N. R., Anupasha, K., Kumar, S., Saha, S. K., & Dadhwal, V. K. (2009). Potential of MODIS derived temperature/vegetation dynamics index to infer soil moisture status. International Journal of Remote Sensing, 30(1), 23–39.

    Article  Google Scholar 

  • Pinzon, J. (2002). Using HHT to successfully uncouple seasonal and interannual components in remotely sensed data. In SCI 2002 Conference Proceedings, 14–18 July, Orlando, Florida.

  • Pinzon, J., Brown, M. E. and Tucker, C. J. (2004). Satellite time series correction of orbital drift artifacts using empirical mode decomposition. In N. E. Huang & S. S. P. Shen (Eds.), EMD and its applications, 10:285–295 (Singapore: World Scientific).

  • Poveda, G., & Salazar, L. F. (2004). Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia. Remote Sensing of Environment, 93(3), 391–401.

    Article  Google Scholar 

  • Rahman, A. F., Sims, D. A., Cordova, V. D., & El-Masri, B. Z. (2005). Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophysical Research Letters, 32, L19404.

    Article  Google Scholar 

  • Ralhan, P. K., Khanna, R. K., Singh, S. P., & Singh, J. S. (1985). Phenological characteristics of the tree layer of Kumaun Himalayan forests. Vegetatio, 60, 91–101.

    Article  Google Scholar 

  • Schwarz, M., Zimmermann, N. E., & Waser, L. T. (2004). MODIS based continuous fields of tree cover using generalized linear models. Geoscience and remote sensing symposium IGARSS apos;04. Proceedings. IEEE International, 4, 2377–2380.

    Google Scholar 

  • Schwatz, M. D., & Crawford, T. M. (2001). Detecting energy balance modifications at the onset of spring. Physical Geography, 22, 394–409.

    Google Scholar 

  • SFR (2011). State of forest resources 2011. Forest survey of India. Ministry of environment and forests, Government of India.

  • Singh, K. P., & Kushwaha, C. P. (2005). Paradox of leaf phenology: Shorea robusta is a semi-evergreen species in tropical dry deciduous forests in India. Current Science, 88, 1820–1824.

    Google Scholar 

  • Solano, R., Didan, K., Jacobson, A., & Huete, A. (2010). MODIS vegetation indices (MOD13) C5 user’s guide. Updated technical document, terrestrial biophysics and remote sensing lab. University of Arizona.

  • Studer, S., Stockli, R., Appenzeller, C., & Vidale, P. L. (2007). A comparative study of satellite and ground based phenology. International Journal of Biometereology, 51, 405–441.

    Article  Google Scholar 

  • Thakur, P. S., Dutt, V., & Thakur, A. (2008). Impact of inter-annual climate variability on the phenology of eleven multipurpose tree species. Current Science, 94, 1053–1058.

    Google Scholar 

  • Townshend, J. R. G. (1994). Global data sets for land applications from the advanced very high resolution radiometer: an introduction. International Journal of Remote Sensing, 15, 3319–3332.

    Article  Google Scholar 

  • Tucker, C. J., Pinzon, J. E., Brown, M., Slayback, D., Pak, E. W., Mahoney, R., Vermote, E., & El Saleous, N. (2005). An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. International Journal o Remote Sensing, 26, 4485–4498.

    Article  Google Scholar 

  • Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007). Analysis of time-series MODIS 250m vegetation index data for cropclassification in the US Central Great Plains. Remote Sensing of Environment, 108, 290–310.

    Article  Google Scholar 

  • Xiao, X. (2006). Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sensing of Environment, 103, 465–473.

    Article  Google Scholar 

  • Xu, L., Myneni, R. B., Chapin, F. S., Callaghan, T. V., Pinzon, J. E., Tucker, C. J., et al. (2013). Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change Letters. doi:10.1038/nclimate1836.

    Google Scholar 

  • Zhang, X., Friedl, M. A., Scaaf, C. B., Strahler, A. H., Hodges, J. C. F., & Gao, F. (2002). Use of MODIS data to study the relation between climatic spatial variability and vegetation phenology in northern high latitudes. IEEE Transactions Geoscience and Remote Sensing, 1149–1151.

  • Zhang, X. Y., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., Gao, F., Reed, B. C., & Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84, 471–475.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to NASA and GIMMS team for providing the processed AVHRR GIMMS NDVI data and MODIS data and making it freely available to global researchers. Thanks are also due to the reviewer for constructive comments which helped in improving the usability of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jeganathan.

About this article

Cite this article

Jeganathan, C., Nishant, N. Scrutinising MODIS and GIMMS Vegetation Indices for Extracting Growth Rhythm of Natural Vegetation in India. J Indian Soc Remote Sens 42, 397–408 (2014). https://doi.org/10.1007/s12524-013-0337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-013-0337-5

Keywords

Navigation