Skip to main content
Log in

A Novel Approach to Estimate Diffuse Attenuation Coefficients for QuickBird Satellite Images: A Case Study at Kish Island, the Persian Gulf

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Diffuse attenuation coefficient (k d ) is a critical parameter for benthic habitat mapping using remotely sensed data. This research attempted to develop a new approach to estimate k d in blue and green bands of QuickBird satellite image based on the integration of Lyzenga’s method and updated NASA-k d 490 algorithm. To do this, the Lyzenga’s method was utilized to determine the ratio of k d in different bands of QuickBird satellite image. Additionally, NASA-k d 490 algorithm was applied to determine k d 490 by using remotely sensed reflectance values of blue (R rs Blue) and green (R rs Green) bands in each pixel of QuickBird satellite image. Since the aforementioned algorithm has been developed for other types of sensors, an approach using weighted mean value of parameters for SeaWiFS, MERIS, VIIRS, and OCTS sensors were employed to estimate parameter values for QuickBird image. After determining the k d 490 values as k d for blue band, the k d values for green and red bands were subsequently obtained by using Lyzenga’s method. Then, Mumby and Edwards’ method was employed as evidence to evaluate the accuracy of the results achieved from newly developed approach. Eventually, the maximum likelihood classifier was implemented during pre and post correction steps to examine the capability of the proposed approach. The final results proved to be consistent in the areas deeper than 2 m between estimated k d values using the proposed approach and the results obtained from Mumby and Edwards’ method. On the other hand, the values estimated for extremely shallow areas seem to be overestimated. Furthermore, results demonstrated an increment of ~16 % in the overall accuracy of the classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bierwirth, P., Lee, T., & Burne, R. (1993). Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery. Photogrammetric Engineering and Remote Sensing; (United States), 59(3).

  • Boss, E., & Zaneveld, J. R. V. (2003). The effect of bottom substrate on inherent optical properties: evidence of biogeochemical processes. Limnology and Oceanography, 346–354.

  • Brock, J. C., Wright, C. W., Kuffner, I. B., Hernandez, R., & Thompson, P. (2006). Airborne lidar sensing of massive stony coral colonies on patch reefs in the northern Florida reef tract. Remote Sensing of Environment, 104(1), 31–42.

    Article  Google Scholar 

  • Cuevas-Jiménez, A., Ardisson, P. L., & Condal, A. R. (2002). Mapping of shallow coral reefs by colour aerial photography. International Journal of Remote Sensing, 23(18), 3697–3712. doi:10.1080/01431160110075640.

    Article  Google Scholar 

  • Elvidge, C., Dietz, J., Berkelmans, R., Andréfouët, S., Skirving, W., Strong, Tuttle, B. (2004). Satellite observation of Keppel Islands (Great Barrier Reef) 2002 coral bleaching using IKONOS data. Coral Reefs, 23(1). doi:10.1007/s00338-003-0364-8.

  • Holden, H., & Ledrew, E. (1999). Hyperspectral identification of coral reef features. International Journal of Remote Sensing, 20(13), 2545–2563. doi:10.1080/014311699211921.

    Article  Google Scholar 

  • Holden, H., & LeDrew, E. (2002). Measuring and modeling water column effects on hyperspectral reflectance in a coral reef environment. Remote Sensing of Environment, 81(2), 300–308.

    Article  Google Scholar 

  • Holden, H., & LeDrew, E. (2008). An examination of variability in vertical radiometric profiles in a coral reef environment. Journal of Coastal Research, 241, 224–231. doi:10.2112/05-0446.1.

    Article  Google Scholar 

  • Jupp, D. L. B. (1988). Background and extensions to depth of penetration (DOP) mapping in shallow coastal waters. Proceedings of the Symposium on Remote Sensing of the Coastal Zone, Gold Coast, Queensland, pp. IV.2.1–IV.2.19.

  • Kabiri, K., Pradhan, B., Rezai, H., Ghobadi, Y., & Moradi, M. (2012). Fluctuation of sea surface temperature in the Persian Gulf and its impact on coral reef communities around Kish Island. Colloquium on Humanities, Science & Engineering Research (CHUSER 2012), December 2012, Kota Kinabalu, Sabah, Malaysia, 164–167.

  • Kabiri, K., Pradhan, B., Samimi-Namin, K., & Moradi, M. (2012b). Detecting coral bleaching, using QuickBird multi-temporal data: a feasibility study at Kish Island, the Persian Gulf. Estuarine, Coastal and Shelf Science, 117, 273–281. doi:10.1016/j.ecss.2012.12.006.

    Article  Google Scholar 

  • Karpouzli, E., Malthus, T. J., & Place, C. J. (2004). Hyperspectral discrimination of coral reef benthic communities in the western Caribbean. Coral Reefs, 23(1), 141–151.

    Article  Google Scholar 

  • Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., & Flynn, L. (1997). The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5), 1286–1298.

    Article  Google Scholar 

  • Lyzenga, D. R. (1978). Passive remote-sensing techniques for mapping water depth and bottom features. Applied Optics, 17, 379–383.

    Article  Google Scholar 

  • Lyzenga, D. R. (1981). Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. International Journal of Remote Sensing, 2, 71–82.

    Article  Google Scholar 

  • Matthew, M. W., Adler-Golden, S. M., Berk, A., Richtsmeier, S. C., Levine, R. Y., Bernstein, L. S., et al. (2000). Status of atmospheric correction using a MODTRAN4-based algorithm: DTIC document.

  • Mishra, D. R., Narumalani, S., Rundquist, D., & Lawson, M. (2005). Characterizing the vertical diffuse attenuation coefficient for downwelling irradiance in coastal waters: Implications for water penetration by high resolution satellite data. ISPRS Journal of Photogrammetry and Remote Sensing, 60(1), 48–64. doi:10.1016/j.isprsjprs.2005.09.003.

    Article  Google Scholar 

  • Mishra, D., Narumalani, S., Rundquist, D., & Lawson, M. (2006). Benthic habitat mapping in tropical marine environments using QuickBird multispectral data. Photogrammetric Engineering and Remote Sensing, 72(9), 1037.

    Google Scholar 

  • Mueller, J. L. (2000). SeaWiFS algorithm for the diffuse attenuation coefficient, K (490), using water-leaving radiances at 490 and 555 nm. SeaWiFS Postlaunch Calibration and Validation Analyses, part 3(11), 24–27.

    Google Scholar 

  • Mumby, P. J., & Edwards, A. J. (2000). Water column correction approaches. In E. P. Green, P. J. Mumby, A. J. Edwards, & C. D. Clark (Eds.), Remote sensing handbook for tropical coastal management. Paris: Unesco. 316 pp.

    Google Scholar 

  • Nagamani, P. V., Chauhan, P., Sanwlani, N., & Ali, M. M. (2012). Artificial Neural Network (ANN) based inversion of benthic substrate bottom type and bathymetry in optically shallow waters—initial model results. Journal of the Indian Society of Remote Sensing, 40(1), 137–143. doi:10.1007/s12524-011-0142-y.

    Article  Google Scholar 

  • Pope, R. M., & Fry, E. S. (1997). Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Applied Optics, 36(33), 8710. doi:10.1364/AO.36.008710.

    Article  Google Scholar 

  • Purkis, S. J., & Pasterkamp, R. (2004). Integrating in situ reef-top reflectance spectra with Landsat TM imagery to aid shallow-tropical benthic habitat mapping. Coral Reefs, 23(1), 5–20. doi:10.1007/s00338-003-035.

    Article  Google Scholar 

  • Stumpf, R. P., Holderied, K., & Sinclair, M. (2003). Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography, 48(1), 547–556.

    Article  Google Scholar 

  • Thanikachalam, M., & Ramachandran, S. (2003). Shoreline and coral reef ecosystem changes in gulf of Mannar, Southeast coast of India. Journal of the Indian Society of Remote Sensing, 31(3), 157–173. doi:10.1007/bf03030823.

    Article  Google Scholar 

  • Washington, M., Kirui, P., Cho, H. J., & Wafo-Soh, C. (2012). Data-driven correction for light attenuation in shallow waters. Remote Sensing Letters, 3(4), 335–342. doi:10.1080/01431161.2011.597791.

    Article  Google Scholar 

  • Werdell, P. J., & Bailey, S. W. (2005). An improved bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sensing of Environment, 98(1), 122–140.

    Article  Google Scholar 

  • Werdell, P. J., & Roesler, C. S. (2003). Remote assessment of benthic substrate composition in shallow waters using multispectral reflectance. Limnology and Oceanography, 557–567.

Download references

Acknowledgments

This research is fully supported by the University Putra Malaysia Research Grant UPM-RUGS project grant number 05-01-11-1283RU with vote umber 9199892. The authors are grateful to anonymous reviewer for providing very helpful comments on the previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan.

About this article

Cite this article

Kabiri, K., Pradhan, B., Shafri, H.Z.M. et al. A Novel Approach to Estimate Diffuse Attenuation Coefficients for QuickBird Satellite Images: A Case Study at Kish Island, the Persian Gulf. J Indian Soc Remote Sens 41, 797–806 (2013). https://doi.org/10.1007/s12524-013-0293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-013-0293-0

Keywords

Navigation