Skip to main content
Log in

New empirical equation to estimate the soil moisture content based on thermal properties using machine learning techniques

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Information about soil moisture content is crucial for the sustenance of agricultural system because it helps to make decision on irrigation scheduling and water management. However, the conventional procedures for determining the soil moisture content need much effort, and time-consuming with large dataset. It is known that soil thermal properties have significant influence on the moisture content of soil. Therefore, the soil moisture content can be determined based on the soil thermal properties, which can easily be measured with portable equipment known as KD2 Pro. This study presents an alternative technique for estimating the soil moisture content from thermal properties using machine learning (ML). Actual measurements of moisture contents and thermal properties at seventy-five points were used. Three ML techniques including artificial neural network (ANN), fuzzy logic (FL), and support vector machine (SVM) were used to predict the moisture content of soil from its thermal properties (thermal conductivity, thermal diffusivity, and specific heat). The results show that all the three techniques (ANN, FL, and SVM) were able to predict moisture content with acceptable errors where the average absolute error is around 5.65%. Moreover, a new empirical equation is presented to allow quick estimation of the moisture content. Ultimately, the developed models can be employed to predict the soil moisture content in any farmland with known thermal properties, which will lead to cost reduction and less time and effort to determine soil moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AAPE:

average absolute percentage error

AI:

artificial intelligence

ANFIS:

adaptive neuro-fuzzy inference system

ANN:

artificial neural network

CDF:

cumulative distribution function

CV:

coefficient of variation

FL:

fuzzy logic system

PDF:

probability density function

RMSE:

root mean square error

R-value:

correlation coefficient

SD:

standard deviation

SVM:

support vector machine

References

  • AASHTO T 265 (2008) Laboratory determination of moisture content of soils. http://www.dot.nd.gov/manuals/materials/testingmanual/t265.pdf.

  • Adegbola K, Sanuade OA, Oladunjoye MA, Adefehinti A. (2020) Investigating the necessity of in-situ and laboratory data in determining thermal properties of tar sands, an experimental design approach. J King Saud Univ – Sci. 32(3): 2148-2156.https://doi.org/10.1016/j.jksus.2020.02.025

  • Ahmadi MA (2016) Toward reliable model for prediction drilling fluid density at wellbore conditions: a LSSVM model. Neurocomputing 211:143–149

    Article  Google Scholar 

  • Ahmed A, Elkatatny S, Ali A, Mahmoud M, Abdulraheem A (2018) New model for pore pressure prediction while drilling using artificial neural networks. Arab J Sci Eng 44:6079–6088

    Article  Google Scholar 

  • Ahmed A, Elkatatny S, Ali A, Abdulraheem A (2019) Comparative analysis of artificial intelligence techniques for formation pressure prediction while drilling. Arab J Geosci 12(18):592

    Article  Google Scholar 

  • Aizenberg I, Sheremetov L, Villa-Vargas L, Martinez-Muñoz J (2016) Multilayer neural network with multi-valued neurons in time series forecasting of oil production. Neurocomputing 175:980–989

    Article  Google Scholar 

  • Barry-Macaulay D, Bouazza A, Singh RM, Wang B, Ranjith PG (2013) Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Eng Geol 164:131–138

    Article  Google Scholar 

  • Çakmak G, Yıldız C (2011) The prediction of seedy grape drying rate using a neural network method. Comput Electron Agric 75(1):132–138

    Article  Google Scholar 

  • Cosenza P, Guerin R, Tabbagh A (2003) Relationship between thermal conductivity and water content of soils using numerical modelling. Eur J Soil Sci 54(3):581–588

    Article  Google Scholar 

  • David MPC, Concepcion GP, Padlan EA (2010) Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies. BMC Bioinf 11(1):79

    Article  Google Scholar 

  • Decagon Devices, Inc (2006) KD2 Pro Thermal Properties Analyzer: Operator’s manual. http://manuals.decagon.com/Manuals/13351_KD2%20Pro_Web.pdf

  • Elkatatny S (2017) New approach to optimize the rate of penetration using artificial neural network. Arab J Sci Eng 43:6297–6304

    Article  Google Scholar 

  • Elkatatny S, Tariq Z, Mahmoud M (2016) Real time prediction of drilling fluid rheological properties using artificial neural networks visible mathematical model (white box). J Pet Sci Eng 146:1202–1210

    Article  Google Scholar 

  • Elkatatny S, Tariq Z, Mahmoud M, Abdulraheem A (2018a) New insights into porosity determination using artificial intelligence techniques for carbonate reservoirs. Petroleum 4(4):408–418

    Article  Google Scholar 

  • Elkatatny S, Tariq Z, Mahmoud M, Mohamed I, Abdulraheem A (2018b) Development of new mathematical model for compressional and shear sonic times from wireline log data using artificial intelligence neural networks (white box). Arab J Sci Eng 43(11):6375–6389

    Article  Google Scholar 

  • Evans RG, Sadler EJ (2008) Methods and technologies to improve efficiency of water use. Water Resour Res 44:1–15

    Google Scholar 

  • Fatoba JO, Sanuade OA, Amosun JO, Hammed OS (2018) Prediction of hydraulic conductivity from Dar Zarrouk parameters using artificial neural network. Indian J Geosci 72(1):51–64

    Google Scholar 

  • Feizizadeh B, Roodposhti MS, Blaschke T, Aryal J (2017) Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping. Arab J Geosci 10(5):122

    Article  Google Scholar 

  • Gomes MG, Flores-Colen I, Manga LM, Soares A, de Brito J (2017) The influence of moisture content on the thermal conductivity of external thermal mortars. Constr Build Mater 135:279–286

    Article  Google Scholar 

  • Greaves GE, Wang YM (2017) Identifying irrigation strategies for improved agricultural water productivity in irrigated maize production through crop simulation modelling. Sustainability 9(4):630

    Article  Google Scholar 

  • Groenendyk DG, Ferré TPA, Thorp KR, Rice AK (2015) Hydrologic-process-based soil texture classifications for improved visualization of landscape function. PLoS ONE 10(6):e0131299. https://doi.org/10.1371/journal.pone.0131299

    Article  Google Scholar 

  • Gu Y, Bao Z, Song X, Wei M, Zang D, Niu B, Lu K (2019) Permeability prediction for carbonate reservoir using a data-driven model comprising deep learning network, particle swarm optimization, and support vector regression: a case study of the LULA oilfield. Arab J Geosci 12(20):622

    Article  Google Scholar 

  • Hamouda YE, Phillips C (2018) Optimally heterogeneous irrigation for precision agriculture using wireless sensor networks. Arab J Sci Eng 44(4):3183–3195

    Article  Google Scholar 

  • Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y (2017) Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology 2(4):230–243. https://doi.org/10.1136/svn-2017-000101

  • Khazaei J, Moayedi H (2017) Soft expansive soil improvement by eco-friendly waste and quick lime. Arab J Sci Eng 44(10):8337–8346

    Article  Google Scholar 

  • Kočí V, Vejmelková E, Čáchová M, Koňáková D, Keppert M, Maděra J, Černý R (2017) Effect of moisture content on thermal properties of porous building materials. Int J Thermophys 38(2):28

    Article  Google Scholar 

  • Kotani M, Katsura M, Ozawa S (2004) Detection of gas leakage sound using modular neural networks for unknown environments. Neurocomputing 62:427–440

    Article  Google Scholar 

  • Mahdavia SM, Neyshabouri MR, Fujimaki H (2016) Assessment of some soil thermal conductivity models via variations in temperature and bulk density at low moisture range. Eurasian Soil Sci 49(8):915–925

  • Mahmoud AAA, Elkatatny S, Mahmoud M, Abouelresh M, Abdulraheem A, Ali A (2017) Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network. Int J Coal Geol 179:72–80

    Article  Google Scholar 

  • MathWorks, Inc (2008) Neural network toolbox 6, user’s guide. MathWorks, Inc.

  • Mesbah M, Shahsavari S, Soroush E, Rahaei N, Rezakazemi M (2018) Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. J CO2 Util 25:99–107

    Article  Google Scholar 

  • Moussa T, Elkatatny S, Mahmoud M, Abdulraheem A (2018) Development of new permeability formulation from well log data using artificial intelligence approaches. J Energy Res Technol 140(7):072903

    Article  Google Scholar 

  • Noor EA, Al-Moubaraki AH (2014) Influence of soil moisture content on the corrosion behavior of X60 steel in different soils. Arab J Sci Eng 39(7):5421–5435

    Article  Google Scholar 

  • Nybø R (2010) Fault detection and other time series opportunities in the petroleum industry. Neurocomputing 73(10-12):1987–1992

    Article  Google Scholar 

  • Oladunjoye MA, Sanuade OA (2012a) In situ determination of thermal resistivity of soil: case study of Olorunsogo power plant, southwestern Nigeria. ISRN Civil Eng 2012:1–14

    Article  Google Scholar 

  • Oladunjoye MA, Sanuade OA (2012b) Thermal diffusivity, thermal effusivity and specific heat of soils in Olorunsogo Powerplant, southwestern Nigeria. Int J Res Rev Appl Sci 13(2):502–521

    Google Scholar 

  • Oladunjoye MA, Adefehinti A, Sanuade OA (2013) In-situ and laboratory determination of thermal properties of tar sands in Eastern Dahomey basin southwestern Nigeria. Int J Res Rev Appl Sci 20(1):14–30

    Google Scholar 

  • Olatunji SO, Selamat A, Azeez ARA (2015) Modeling permeability and PVT properties of oil and gas reservoir using hybrid model based on type-2 fuzzy logic systems. Neurocomputing 157:125–142

    Article  Google Scholar 

  • Patel AK, Chatterjee S, Gorai AK (2017) Development of machine vision-based ore classification model using support vector machine (SVM) algorithm. Arab J Geosci 10(5):107

    Article  Google Scholar 

  • Rammay MH, Abdulraheem A (2017) PVT correlations for Pakistani crude oils using artificial neural network. J Pet Explor Prod Technol 7(1):217–233

    Article  Google Scholar 

  • Rico-Contreras JO, Aguilar-Lasserre AA, Méndez-Contreras JM, López-Andrés JJ, Cid-Chama G (2017) Moisture content prediction in poultry litter using artificial intelligence techniques and Monte Carlo simulation to determine the economic yield from energy use. J Environ Manag 202:254–267

    Article  Google Scholar 

  • Roxy MS, Sumithranand VB, Renuka G (2014) Estimation of soil moisture and its effect on soil thermal characteristics at Astronomical Observatory, Thiruvananthapuram, south Kerala. J Earth Syst Sci 123(8):1793–1807

    Article  Google Scholar 

  • Rubio MC, Cobos DR, Josa R, Ferrer F (2009) A new analytical laboratory procedure for determining the thermal properties in porous media, based on the American standard D5334-05. Estud Zona Saturada Suelo 9:18–20

    Google Scholar 

  • Sanuade OA, Adesina RB, Amosun JO, Fajana AO, Olaseeni OG (2017) Using artificial neural network to predict dry density of soil from thermal conductivity. RMZ-Mater Geoenviron 64(3):169–180

    Article  Google Scholar 

  • Sanuade OA, Adetokunbo P, Oladunjoye MA, Olaojo AA (2018) Predicting moisture content of soil from thermal properties using artificial neural network. Arab J Geosci 11:566

    Article  Google Scholar 

  • Singh DN, Devid K (2000) Generalized relationships for estimating soil thermal resistivity. Exp Thermal Fluid Sci 22(3-4):133–143

    Article  Google Scholar 

  • Singh S, Kanli AI, Sevgen S (2016) A general approach for porosity estimation using artificial neural network method: a case study from Kansas gas field. Stud Geophys Geod 60(1):130–140

    Article  Google Scholar 

  • Russell, Norvig P (2009) Artificial intelligence: a modern approach, 3rd eds. Prentice-Hall, New Jersey (Chapter 1)

  • Tahmasebi P, Hezarkhani A (2012) A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Comput Geosci 42:18–27

    Article  Google Scholar 

  • Tehlah N, Kaewpradit P, Mujtaba IM (2016) Artificial neural network-based modeling and optimization of refined palm oil process. Neurocomputing 216:489–501

    Article  Google Scholar 

  • Topuz A (2010) Predicting moisture content of agricultural products using artificial neural networks. Adv Eng Softw 41(3):464–470

    Article  Google Scholar 

  • Verma AK, Cheadle BA, Routray A, Mohanty WK, Mansinha L (2014) Porosity and permeability estimation using neural network approach from well log data. Am Assoc Pet Geol Search Disc 41276

  • Xiao Y, Wu J, Lin Z, Zhao X (2018) A deep learning-based multi-model ensemble method for cancer prediction. Comput Meth Prog Bio 153:1–9. https://doi.org/10.1016/j.cmpb.2017.09.005

  • Zaidi A, Masmoudi R (2011) Combined effect of moisture and temperature on concrete cover surrounding GFRP bars. Arab J Sci Eng 36(7):1221–1239

    Article  Google Scholar 

  • Zhang N, Wang Z (2017) Review of soil thermal conductivity and predictive models. Int J Therm Sci 117:172–183

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the College of Petroleum and Geosciences (CPG) at King Fahd University of Petroleum and Minerals (KFUPM) for the technical supports and provision of valuable software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluseun A. Sanuade.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanuade, O.A., Hassan, A.M., Akanji, A.O. et al. New empirical equation to estimate the soil moisture content based on thermal properties using machine learning techniques. Arab J Geosci 13, 377 (2020). https://doi.org/10.1007/s12517-020-05375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05375-x

Keywords

Navigation