Skip to main content

Advertisement

Log in

Assessing the spatiotemporal dynamics of vegetation cover as an indicator of desertification in Egypt using multi-temporal MODIS satellite images

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Desertification is the major environmental threat in the arid and semiarid regions. The soil-adjusted vegetation index (SAVI) was used as an indicator to monitor the desertification change in Egypt. A multi-temporal satellite data of moderate-resolution imaging spectroradiometer were used to estimate SAVI and land surface temperature. Also, Global Multi-resolution Terrain Elevation Data 2010 and climatic data were used for the analysis. This research focuses on assessing the trend of the vegetation cover change in the seasons of January, March, June, September, and December for the years 2002, 2005, 2008, and 2011. The magnitude of the vegetation cover change in periods 2002–2005, 2005–2008, and 2008–2011 at ≤100 and >100 m elevation was analyzed. A major increase in the vegetation cover that occurred in the period 2002–2005 was about 3,400 km2, as a result of two national megaprojects (Toshka Project and El-Salam Canal). In contrast, vegetation cover decreased by 5,500 km2 in March during the period 2005–2008, coinciding with the period when the management of the megaprojects failed. Vegetation cover changed again by 1,500 km2 in the period of 2008–2011, and the vegetated areas in the Nile Delta were affected by the sea level rising which was responsible for the soil salinization. Three sites were chosen in this investigation (Kom Ombo, El-Oweinat, and Nile Delta) in order to observe the difference of desertification dynamics and to understand the relationship between the vegetation cover distribution and other environmental variables. Anti-desertification policies and advanced agricultural management are highly required in Egypt to decrease any environmental crises and food shortage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abd El-Kawy OR, Rød JK, Ismail HA, Suliman AS (2011) Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Appl Geogr 31:483–494

    Article  Google Scholar 

  • Aboelghar M, Ali A-R, Arafat S (2012) Spectral wheat yield prediction modeling using SPOT satellite imagery and leaf area index. Arab J Geosci. doi:10.1007/s12517-012-0772-6

    Google Scholar 

  • Adamo SB, Crews-Meyer KA (2006) Aridity and desertification: exploring environmental hazards in Jáchal, Argentina. Appl Geogr 26:61–85

    Article  Google Scholar 

  • Amiraslani F, Dragovich D (2011) Combating desertification in Iran over the last 50 years: an overview of changing approaches. J Environ Manag 92:1–13

    Article  Google Scholar 

  • Armah FA, Odoi JO, Yengoh GT et al (2010) Food security and climate change in drought-sensitive savanna zones of Ghana. Mitig Adapt Strateg Glob Chang 16:291–306

    Article  Google Scholar 

  • Badreldin N, Goossens R (2013a) Monitoring land use/land cover change using multi-temporal Landsat satellite images in an arid environment: a case study of El-Arish, Egypt. Arab J Geosci. doi:10.1007/s12517-013-0916-3

    Google Scholar 

  • Badreldin N, Goossens R (2013b) A satellite-based disturbance index algorithm for monitoring mitigation strategies effects on desertification change in an arid environment. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-013-9490-y

    Google Scholar 

  • Bakr N, Weindorf DC, Bahnassy MH et al (2010) Monitoring land cover changes in a newly reclaimed area of Egypt using multi-temporal Landsat data. Appl Geogr 30:592–605

    Article  Google Scholar 

  • Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. Remote Sens Rev 13:95–120

    Article  Google Scholar 

  • Bard KA, Shubert SB (1999) Encyclopedia of the archaeology of ancient Egypt. Routledge, New York, p 1280

    Google Scholar 

  • Ci L, Yang X (2009) Desertification and its control in China. Higher Education Press and Springer, Beijing and Dordrecht, p 533

    Google Scholar 

  • CIA (2013) The world factbook. Washington, DC: Central Intelligence Agency. URL. https://www.cia.gov/library/publications/the-world-factbook/geos/eg.html. Accessed 19 Mar 2013

  • D’Odorico P, Bhattachan A, Davis KF et al (2013) Global desertification: drivers and feedbacks. Adv Water Resour 51:326–344

    Article  Google Scholar 

  • Dawelbait M, Morari F (2012) Monitoring desertification in a Savannah region in Sudan using Landsat images and spectral mixture analysis. J Arid Environ 80:45–55

    Article  Google Scholar 

  • Diouf A, Lambin EF (2001) Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal. J Arid Environ 48:129–148

    Article  Google Scholar 

  • Dousset B, Gourmelon F (2003) Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS J Photogramm 58:43–54

    Article  Google Scholar 

  • Dregne HE (1977) Desertification of arid lands. Econ Geogr 53:322–331

    Article  Google Scholar 

  • Dregne HE, Chou N-T (1992) Global desertification dimensions and costs. In: Dregne HE (ed) Degradation and restoration of arid lands. Lubbock: Texas Tech. University, pp 249–282

  • Du P, Li X, Cao W et al (2010) Monitoring urban land cover and vegetation change by multi-temporal remote sensing information. Min Sci Technol (China) 20:922–932

    Article  Google Scholar 

  • El-Nahrawy MA (2011) Country pasture/forage resource profiles: Egypt. FAO, Rome, p 44

    Google Scholar 

  • Epiphanio JCN, Huete AR (1992) Dependence of NDVI and SAVI on sun/sensor geometry and its effect on FAPAR relationships in alfalfa. Remote Sens Environ 51:351–360

    Article  Google Scholar 

  • FAO (2005) Fertilizer use by crop in Egypt. Land and Plant Nutrition Management Service Land and Water Development Division, Rome, p 62

    Google Scholar 

  • Feizizadeh B, Blaschke T (2012) Thermal remote sensing for examining the relationship between urban Land surface Temperature and land use/cover in Tabriz city, Iran. Geoscience and Remote Sensing Symposium (IGARSS), 2012 I.E. International. IEEE, Munich, pp 2229–2232

  • Feizizadeh B, Blaschke T (2013) Examining urban heat island relations to land use and air pollution: multiple endmember spectral mixture analysis for thermal remote sensing. IEEE J Sel Top Appl Earth Obs Remote Sens 6:1749–1756

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T, Nazmfar H, Akbari E, Kohbanani HR (2012) Monitoring land surface temperature relationship to land use/land cover from satellite imagery in Maraqeh County, Iran. J Environ Plann Man 1–26. doi: 10.1080/09640568.2012.717888

  • Frihy OE, El-Sayed MK (2012) Vulnerability risk assessment and adaptation to climate change induced sea level rise along the Mediterranean coast of Egypt. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-012-9418-y

    Google Scholar 

  • Geist HJ, Lambin EF (2004) Dynamic causal patterns of desertification. Bioscience 54:817–829

    Article  Google Scholar 

  • Gilabert MA, Gonzalez-Piqueras J, Garcia-Haro FJ, Melia J (2002) A generalized soil-adjusted vegetation index. Remote Sens Environ 82:8

    Article  Google Scholar 

  • Governorate NV (2011) Shark El-Oweinat (Arabic). Agriculture in the New Valley 5

  • Grainger A, Smith MS, Squires VR, Glenn EP (2000) Desertification and climate change: the case for greater convergence. Mitig Adapt Strateg Glob Chang 5:361–377

    Article  Google Scholar 

  • Gunderson LH (2000) Ecological resilience—in theory and application. Annu Rev Ecol Syst 31:425–439. doi:10.1146/annurev.ecolsys.31.1.425

    Article  Google Scholar 

  • Hall FG, Townshend JR, Engman ET (1995) Status of remote sensing algorithms for estimation of land surface state parameters. Remote Sens Environ 51:138–156

    Article  Google Scholar 

  • Hashimoto H, Dungan J, White M et al (2008) Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data. Remote Sens Environ 112:142–155

    Article  Google Scholar 

  • Herrmann SM, Anyamba A, Tucker CJ (2005) Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob Environ Chang 15:394–404

    Article  Google Scholar 

  • Huang S, Siegert F (2006) Land cover classification optimized to detect areas at risk of desertification in North China based on SPOT VEGETATION imagery. J Arid Environ 67:308–327

    Article  Google Scholar 

  • Huete A (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309

    Article  Google Scholar 

  • Huete AR, Hua G, Qi J, Leeuwen AC, Van WJD (1992) Normalization of multidirectional red and NIR reflectances with the SAVI. Remote Sens Environ 41:143–154

    Article  Google Scholar 

  • Kassas M (1977) Arid and semi-arid lands: problems and prospects. Agro-Ecosystems 3:185–204

    Article  Google Scholar 

  • Kelarestaghi A, Jafarian Jeloudar Z (2009) Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques. Arab J Geosci 4:401–411

    Article  Google Scholar 

  • Kepner WG, Rubio JL, Mouat DA, Pedrazzini F (2006) Desertification in the Mediterranean region. A security issue. Proceedings of the NATO Mediterranean Dialogue Workshop on Desertification in the Mediterranean Region. A security issue. Springer, Dordrecht, p 606

  • Kottek M, Grieser J, Beck C et al (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Mildrexler DJ, Zhao M, Heinsch FA, Running SW (2007) A new satellite-based methodology for continental-scale disturbance detection. Ecol Appl Publ Ecol Soc Am 17:235–250

    Google Scholar 

  • Mohamed ES, Belal A, Saleh A (2012) Assessment of land degradation east of the Nile Delta, Egypt using remote sensing and GIS techniques. Arab J Geosci. doi:10.1007/s12517-012-0553-2

    Google Scholar 

  • Nawar S, Reda M, Farag F, El-nahry A (2011) Mapping soil salinity in El-Tina Plain in Egypt using geostatistical approach. Geoinformatics Forum, Salzburg, pp 81–90

    Google Scholar 

  • Othman AA, Rabeh SA, Fayez M et al (2012) El-Salam canal is a potential project reusing the Nile Delta drainage water for Sinai desert agriculture: microbial and chemical water quality. J Adv Res 3:99–108

    Article  Google Scholar 

  • Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Qi J, Chehbouni A, Huete AR et al (1994) A modified soil adjusted vegetation index. Remote Sens Environ 48:119–126

    Article  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  Google Scholar 

  • Reynolds JF, Stafford-smith DM, Lambin E (2003) Do humans cause deserts? An old problem through the lens of a new framework: the Dahlem desertification paradigm. In: Allsopp N, Palmer AR, Milton SJ, et al. (eds) the VIIth International Rangelands Congress. Durban, South Africa, pp 2042–2048

  • Richards JA (2013) Remote sensing digital image analysis: an introduction, 5th edn. Springer, Heidelberg, p 494

    Book  Google Scholar 

  • Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55:95–107

    Article  Google Scholar 

  • Salinas CX, Mendieta J (2012) Mitigation and adaptation investments for desertification and climate change: an assessment of the socioeconomic return. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-012-9380-8

    Google Scholar 

  • Salvati L, Zitti M (2012) Monitoring vegetation and land use quality along the rural–urban gradient in a Mediterranean region. Appl Geogr 32:896–903

    Article  Google Scholar 

  • Schnur MT, Xie H, Wang X (2010) Estimating root zone soil moisture at distant sites using MODIS NDVI and EVI in a semi-arid region of southwestern USA. Ecol Inf 5:400–409

    Article  Google Scholar 

  • Schowengerdt RA (2007) Remote sensing: models and methods for image processing, 3rd edn. Elsevier, Amsterdam, p 558

    Google Scholar 

  • Son NT, Chen CF, Chen CR et al (2012) Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. Int J Appl Earth Obs 18:417–427

    Article  Google Scholar 

  • U.S. Geological Survey (2011a) Vegetation indices monthly L3 global 1 km. URL. https://lpdaac.usgs.gov/products/modis_products_table/mod13a3. Accessed 4 Dec 2012

  • U.S. Geological Survey (2011b) Surface reflectance 8-day L3 global 250 m. URL. https://lpdaac.usgs.gov/products/modis_products_table/mod09Q1. Accessed 4 Dec 2012

  • U.S. Geological Survey (2011c) Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). URL. http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/GMTED2010. Accessed 4 Dec 2012

  • Vermote EF, Kotchenova SY, Ray JP (2011) MODIS surface reflectance user’s guide. MODIS Land Surface Reflectance Science Computing Facility, College Park, USA, p 40

  • Verón SR, Paruelo JM, Oesterheld M (2006) Assessing desertification. J Arid Environ 66:751–763

    Article  Google Scholar 

  • Vogt JV, Safriel U, Von Maltitz G et al (2011) Monitoring and assessment of land degradation and desertification: towards new conceptual and integrated approaches. Land Degrad Dev 22:150–165

    Article  Google Scholar 

  • Wan Z, Dozier J, Member A (1996) A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans Geosci Remote 34:892–905

    Article  Google Scholar 

  • Wan Z, Zhang Y, Zhang Q, Li Z (2002) Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens Environ 83:163–180

    Article  Google Scholar 

  • Wang XD, Zhong XH, Liu SZ et al (2008) Regional assessment of environmental vulnerability in the Tibetan Plateau: development and application of a new method. J Arid Environ 72:1929–1939

    Article  Google Scholar 

  • Warner J (2012) The Toshka mirage in the Egyptian desert—river diversion as political diversion. Environ Sci Policy 1–11

  • Weng Q (2002) Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J Environ Manag 64:273–284

    Article  Google Scholar 

  • World Bank (2012) Agricultural areas statistics. Egypt, Arab Rep Data. URL. http://data.worldbank.org/country/egypt-arab-republic#cp_cc. Accessed 28 Aug 2012

  • World Bank (2013) Climate baseline. Egypt dashboard. URL. http://sdwebx.worldbank.org/climateportal/index.cfm?page=country_historical_climate&ThisRegion=Africa&ThisCCode=EGY. Accessed 15 Jan 2013

  • Yang J, Weisberg PJ, Bristow NA (2012) Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: comparison of vegetation indices and spectral mixture analysis. Remote Sens Environ 119:62–71

    Article  Google Scholar 

  • Yeganeh H, Khajedein S, Amiri F, Shariff ARBM (2012) Monitoring rangeland ground cover vegetation using multitemporal MODIS data. Arab J Geosci. doi:10.1007/s12517-012-0733-0

    Google Scholar 

  • Zahran MA, Willis AJ (2009) The vegetation of Egypt, 2nd edn. Springer, Heidelberg, p 451

    Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB et al (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Agricultural Research and Development Fund in Egypt. We gratefully acknowledge USGS Earth Resources Observation and Science for the data support. We thank the editor and the anonymous reviewers for their criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasem Badreldin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badreldin, N., Frankl, A. & Goossens, R. Assessing the spatiotemporal dynamics of vegetation cover as an indicator of desertification in Egypt using multi-temporal MODIS satellite images. Arab J Geosci 7, 4461–4475 (2014). https://doi.org/10.1007/s12517-013-1142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-1142-8

Keywords

Navigation