Skip to main content

Advertisement

Log in

Groundwater quality of Yemen volcanic terrain and their geological and geochemical controls

نوعية المياه الجوفية في بركانيات اليمن وضوابطها الجيولوجية والجيوكيميائية

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

One hundred thirty boreholes of volcanic aquifers in rural Yemen Highland Groundwaters (YHGs) were chemically investigated to assess the suitability of water for drinking. Focus is to identify inorganic constituents of significant risk to health that occur in groundwaters of this area. Results showed that a number of boreholes contain, apart from fluoride, levels of nitrate, some heavy metals, total dissolved solids, and sulfates that could pose a health risk for consumers. The lateral variations of major ions with depth varied within the same aquifer based on the dynamic equilibrium of groundwater and hydrogeological conditions. The main inorganic groundwater contaminant in volcanic YHG is fluoride which is attributed to groundwater lithology and water type. Fluoride appears high in Ca-poor groundwater and where cation exchanges of Ca for Na are dominant. High F concentration in YHG is an extension of East African fluoride-rich groundwater. Majority of tube wells show that Fe concentration exceeds WHO guideline many folds. Much of the iron and manganese in groundwaters are naturally occurring, since the source rocks are enriched in ferromagnesian minerals. NO 3 and Cl concentrations that have been detected in some wells may indicate sewage and/or agricultural runoff. Elevated concentration of chemical constituents in groundwater is a sign of groundwater degradation.

Abstract

تم فحص 130 بئر جوفي في المناطق الواقعة ضمن الإطار الجغرافي لبركانيات اليمن كيميائيا لغرض تقييم صلاحية هذه المياه للشرب. تم التركيز علي العناصر الغير عضوية المتركزة في المياه الجوفية لهذه المناطق والتي تشكل خطورة علي الصحة. أشارت النتائج إلي أن هناك العديد من الآبار تحتوي علي نسب عالية من ،النترات، الكلور، وارتفاع في المكونات الصلبة الذائبة ناهيك عن مستويات الفلور والفلزات الثقيلة المرتفعة. التباين الرأسي والأفقي في تركيز الأيونات يعود إلي التوازن الديناميكي للمياه في الخزان وكذا إلي طبيعة الخزان الجيولوجية. يعتبر عنصر الفلور هوا لملوث الرئيس في مناطق المرتفعات الريفية وعزي ذلك إلي طبيعة الصخور الحاوية ونوعية المياه السائدة. تبين أن الفلور في المياه الجوفية مرتبط بالكالسيوم ويبرز عندما تكون المياه فقيرة في الكالسيوم وحيثما يكون التبادل الأيوني للكالسيوم بالصوديوم في مستوياته العلياء. زيادة نسبة الفلور في مناطق المرتفعات هو استمرار لنفس الظاهرة المنتشرة في مناطق الصدع الأفريقي. أظهرت غالبية الآبار تراكيز عالية في نسبة عنصر الحديد تفوق دليل منظمة الصحة العالمية لمياه الشرب وعزي ذلك إلي توفر المعادن الغنية بالحديد والمغنسيوم في صخور المصدر. أظهرت بعض الآبار نسب عالية من النترات والكلور لتؤكد وجود مصادر خارجية للتلوث يتمثل في مخلفات المجاري والراجع من عمليات الري. الزيادة في نسب العناصر الكيميائية في المياه الجوفية يمكن أن يكون مؤشر علي التدهور في نوعية المياه.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Sakkaf RA (1996) Sustainable groundwater resources management in Sa’adah plain, Yemen, M.Sc. thesis, Delft, The Netherlands

  • Al-Shaibani S (2008) Human health and environment challenges-Yemen, Doha. www.FulbrightAcademy.org/www.qf.org.qa

  • Applin KR, Zhao N (1989) The kinetics of Fe (II) oxidation and well encrustation. Ground Water 27:168–174

    Article  Google Scholar 

  • Ayenew T (2006) Major ions composition of the groundwater and surface water systems and their geological and geochemical controls in the Ethiopian volcanic terrain. SINET Ethiopian J Sci 28:171–188

    Google Scholar 

  • Ayenew T (2008) The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian rift and adjacent highlands. Environ Geol 54:1313–1324

    Article  Google Scholar 

  • Barraclough D, Gardner CMK, Wellings SR, Cooper JD (1994) A tracer investigation into the importance of fissure flow in the unsaturated zone of the British Upper Chalk. J Hydrol 156:459–469

    Article  Google Scholar 

  • Berner RA (1971) Principles of chemical sedimentology. McGraw Hill, New York, p 240

    Google Scholar 

  • Bôhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10:153–179. doi:10.1007/s10040-0183-3

    Article  Google Scholar 

  • British Geological Survey (2003) Water quality fact sheet: nitrate. Produced for WaterAid, London

  • Bugaisa SL (1971) Significance of fluorine in Tanzania drinking water. In: Proceedings of the Conference of Rural Water Supply in East Africa. Dar-es-Salam, pp 107–113

  • Chernet T, Travi Y (1993) Preliminary observations concerning the genesis of high fluoride contents in the Ethiopian Rift. In: Thorweiche U, Schandlmeier H (eds) Geoscientific research in northeast Africa, vol 8. Balkema, Rotterdam, pp 651–654

    Google Scholar 

  • Chernet T, Travi Y, Valles V (2001) Mechanism of degradation of the quality of natural water in the lakes region of the Ethiopian rift valley. Water Res 35:2819–2832

    Article  Google Scholar 

  • Chilton J, Seiler KP (2006) Groundwater occurrence and hydrogeological environments. In: Schmoll O, Hoard G, Chilton J, Chorus I (eds) Protecting groundwater for health (WHO). IWA, London

    Google Scholar 

  • Davidson I, Al-Kadasi M, Al-Khirbash S, Al-Subbary AK, Baker J, Blakey S, Bosence D, Dart C, Heaton R, McClay K, Menzies M, Nichols G, Owen L, Yelland A (1994) Geological evolution of the southeastern Red Sea rift margin, Republic of Yemen. Bull Geol Soc Am 106:1471–1493

    Google Scholar 

  • Davis JA, Kent DB (1990) Surface complexation modeling in aqueous geochemistry. Rev Miner 23:177–260

    Google Scholar 

  • Dissanayake CB (1991) The fluoride problem in the groundwater of Sri Lanka-environmental management and health. Int J Environ Stud 38:137–156

    Article  Google Scholar 

  • Dock L, Vahter M (1999) Metal toxicology. In: Ballantyne B, Marrs T, Syversen T (eds) General and applied toxicology. Macmillan Reference Ltd, London, pp 2065

  • Drever JI (1997) The geochemistry of natural waters, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Dudal R (1957) Paddy soils. Presented at the first South East Asian soils conference, Manila, December 1957

  • Fara M, Chandrasekharam D, Minissale A (1999) Hydrogeochemistry of Damt thermal springs, Yemen Republic. Geothermics 28:241–252

    Article  Google Scholar 

  • Flaten TP, Steinnes E (1999) Soil and fresh waters. In: Ballantyne B, Marrs T, Syversen T (eds) General and applied toxicology, vol 2, 2nd edn. Macmillan Reference, London

    Google Scholar 

  • Gaciri SJ, Davies TC (1993) The occurrence and geochemistry of fluoride in some natural waters of Kenya. J Hydrol 143:395–412

    Article  Google Scholar 

  • Gizaw B (1996) The origin of high bicarbonate and fluoride concentrations in waters of the Main Ethiopian Rift Valley, East African Rift System. J Afr Earth Sci 22:391–402

    Article  Google Scholar 

  • Greake AK, Foste SS (1989) Sequential isotope and solute profiling of the unsaturated zone of the British Chalk. Hydrol Sci J 34:79–95

    Article  Google Scholar 

  • Hack Comp (2004) Spectrophotometer procedure manual (D/R 2400). Hack, Loveland

    Google Scholar 

  • Hadwen P (1975) Fluoride in groundwater in Ethiopia. Geological Survey of Ethiopia. Unpublished report

  • Handa BK (1975) Geochemistry and genesis of fluoride-containing ground waters in India. Ground Water 13:275–281

    Article  Google Scholar 

  • Hem JD (1970) Study and interpretation of the chemical characteristics of natural water. USGS, Water Supply Paper 1473

  • Hem JD (1989) Study and interpretation of the chemical characteristics of natural water, 3rd edn. USGS, Water Supply Paper 2254

  • Hutchinson FE (1970) Environmental pollution from highway deicing compounds. J Soil Water Conserv 25:144–146

    Google Scholar 

  • IARC (1980) IARC monographs on the evaluation of carcinogenic risk of chemicals to man, vol. 23: some metals and metallic compounds. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Kilham P, Hecky RE (1973) Fluoride: geochemical and geological significance in East African water and sediments. Limnol Oceanogr 18:932–945

    Article  Google Scholar 

  • Kloos H, Teklehaimanot R (1999) Distribution of fluoride and fluorosis in Ethiopia and prospects or control. Trop Med Int Health 4:355. doi:10.1046/j.1365-3156.1999.00405.x

    Article  Google Scholar 

  • Laftouhi NE, Vanclooster M, Jalal M, Witam O, Aboufirassi M, Bahir M, Persoons E (2003) Groundwater nitrate pollution in the Essaouira Basin, Morocco. CR Geosci 335:307–317

    Article  Google Scholar 

  • Larsson I (1984) Groundwater in hard rocks. UNESCO, Paris

    Google Scholar 

  • McNeely RN, Neimanis VP, Dwyer L (1979) Water quality sourcebook—a guide to water quality parameters. Inland Waters Directorate, Water Quality Branch, Ottawa 88p

    Google Scholar 

  • Menzies M, Bosence D, El-Nakhal HA, Al-Khirbash S, Al-Kadasi MA, Al-Subbary A (1990) Lithospheric extension and the opening of the Red Sea: sediment-basalt relationship in Yemen. Terra Nova 2:340–350

    Article  Google Scholar 

  • Minissale A, Mattash MA, Vaselli O, Tassi F, Al-Ganad IN, Selmo E, Shawki NM, Tedesco D, Poreda R, Ad-Dukhain AM, Hazzae MK (2007) Thermal springs, fumaroles and gas vents of continental Yemen: their relation with active tectonics, regional hydrology and the country’s geothermal potential. Appl Geochem 22:799–820

    Article  Google Scholar 

  • Moller IJ, Pindborg JJ, Gedalia I, RoedPetersen B (1970) The prevalence of dental fluorosis in the people of Uganda. Arch Oral Biol 15:213–225

    Article  Google Scholar 

  • Moormann FR, Breeman NV (1978) Soil forming processes in aquatic rice lands. Rice: soil, water, land, chapter 5. International Rice Research Institute, Philippines

    Google Scholar 

  • Morgan JJ, Stumm W (1991) Chemical processes in the environment, relevance of chemical speciation. In: Merien E (ed) Metals and their compounds in the environment. VCH, Germany, pp 67–103

    Google Scholar 

  • Nanyaro JT, Aswathanarayana U, Mungure JS, Lahermo PW (1984) A geochemical model for the abnormal fluoride concentrations in waters in parts of northern Tanzania. J Afr Earth Sci 2:129–140

    Google Scholar 

  • Nickson RT, McArther J, Burges W, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338

    Article  Google Scholar 

  • Nickson RT, McArther J, Ravenscroft P, Burges WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater. Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  Google Scholar 

  • Norra S, Berner ZA, Agarwala P, Wagner F, Chandrasekharam D, Stuben D (2005) Impact of irrigation with arsenic rich groundwater on soil and crops: a geochemical case study in West Bengal Delta Plain, India. Appl Geochem 20:1890–1906

    Article  Google Scholar 

  • Ockerse T (1953) Chronic endemic dental fluorosis in Kenya, East Africa. Br Dent J 95:57–60

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2001) A review of the source behavior and distribution of arsenic in natural waters. App Geochem 17:517–568

    Article  Google Scholar 

  • Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT (1992) Cancer risks from arsenic in drinking water. Environ Health Prospect 97:259–267

    Article  Google Scholar 

  • Stollenwerk KG (2003) Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In: Welch AH, Stollenwerk KG (eds) Arsenic in groundwater: geochemistry and occurrence. Kluwer, Dordrecht, pp 67–100

    Google Scholar 

  • Tebbutt TA (1983) Relationship between natural water quality and health. UNISCO, Paris

    Google Scholar 

  • Teotia SP, Teotia M, Singh RK (1981) Hydrogeochemical aspects of endemic aspects of endemic skeletal fluorosis in India—an epidemiological study. Fluoride 14:69–74

    Google Scholar 

  • Tesorieroa AJ, Spruilla TB, Eimersb JL (2004) Geochemistry of shallow groundwater in coastal plain environments in the southeastern United States; implications for aquifer susceptibility. Appl Geochem 19:1471–1482

    Article  Google Scholar 

  • UNICEF (2005) UNICEF’S position on water fluoridation, water environment & sanitation, fluoride in water: an overview. http://www.nofluoride.com/unicef_fluor.htm. Accessed 26 May 2005

  • Weinstein LH, Davison A (2004) Fluorides in the environment, effects on plants and animals. CABI, Wallingford

    Book  Google Scholar 

  • Wellings SR (1984) Recharge of the upper chalk aquifer at a site in Hampshire, England. J Hydrol 69:275–285

    Article  Google Scholar 

  • White AF, Benson SM, Yee AW, Wollenberg HA, Flexser S (1991) Groundwater contamination at the Kesterson Reservoir, California-geochemical parameters influencing selenium mobility. Water Resour Res 27:1085–1089

    Article  Google Scholar 

  • WHO (1993) Guidelines for drinking-water quality: recommendations, vol 1, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  • Williams WM, Nicholas JJ, Nungurrayi PB, Napurrula CR (1996) Paediatric urolithiasis in a remote Australian Aboriginal community. J Paediatr Child Health 32:344–346

    Article  Google Scholar 

  • WRAY-35 (1995) Water resources assessment of Yemen (report). Ministry of Civil and Mineral Resources, General Department of Hydrogeology

  • Zahid A, Hassan MQ, Blake K-D, Flegr M, Clark DW (2008) Groundwater chemistry and occurrence of arsenic in the Meghna floodplain aquifer, southeastern Bangladesh. Environ Geol 54:1247–1260

    Article  Google Scholar 

  • Zheng Y, Stute M, Van Geen A, Gavrieli I, Dhar R, Simpson HJ, Schlosser P, Ahmed KM (2004) Redox control of arsenic mobilization in Bangladesh groundwater. Appl Geochem 19:201–214

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Mr. Abdul Hamid Al-Sha’abi, Director, Rural Water Authority Laboratory, and his team for their unconditional assistance with the data extraction. The two anonymous reviewers provided very constructive and helpful comments which enabled a considerable improvement of the original draft. All interpretations and errors are my own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Saif Al-Mikhlafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Mikhlafi, A.S. Groundwater quality of Yemen volcanic terrain and their geological and geochemical controls. Arab J Geosci 3, 193–205 (2010). https://doi.org/10.1007/s12517-009-0068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-009-0068-7

Keywords

Navigation