Skip to main content
Log in

Peak longitudinal strain delay is superior to TDI in the selection of patients for resynchronisation therapy

  • Original Article
  • Published:
Netherlands Heart Journal Aims and scope Submit manuscript

Background. Mechanical dyssynchrony has proven to be superior to QRS duration in predicting response to cardiac resynchronisation therapy (CRT). Whether time to peak longitudinal strain delay between the mid-septum and mid-lateral left ventricular wall better predicts CRT response than tissue Doppler imaging (TDI) is unclear. This study compares the value of the two methods for the assessment of mechanical dyssynchrony and prediction of CRT responders.

Methods. 66 clinical responders and 17 nonresponders to CRT with severe systolic heart failure (LVEF <35%), New York Heart Association classification III or IV and a wide QRS >130 ms with left bundle branch block were evaluated by peak longitudinal strain and TDI. Doppler echocardiograms and electromechanical time delay (EMD) intervals were acquired before and after pacemaker implantation.

Results. In all responders EMD measured by peak longitudinal strain was >60 ms before implantation, compared with 76% of the patients measured by TDI. Nonresponders had EMD <60 ms measured by both techniques. Only peak longitudinal strain delay showed shortened values in every responder postimplantation and demonstrated the most significant reduction and could predict responders to CRT. However, EMD measured by TDI did not diminish in 30% of the positive clinical responders. Nonresponders showed worsening of the EMD with peak longitudinal strain, but not with TDI.

Conclusions. Responders to CRT can be excellently predicted if EMD before implantation determined by peak longitudinal strain delay is >60 ms. Peak longitudinal strain delay appears to be superior to TDI to predict the response to CRT. (Neth Heart J 2010;18:574–82.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. Auricchio A, Stellbrink C, Sack S, et al. The Pacing Therapies for Congestive Heart Failure (PATH-CHF) study: rationale, design and endpoints of a prospective randomized multicenter study. Am J Cardiol. 1999; 83:130D–135D.

    Article  PubMed  CAS  Google Scholar 

  2. Cazeau S, Leclerq C, Lavergne T, et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med. 2001;344:873–880.

    Article  PubMed  CAS  Google Scholar 

  3. Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–1853.

    Article  PubMed  Google Scholar 

  4. Bristow CR, Saxon LA, Boehmer J, et al. Cardiac resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–2150.

    Article  PubMed  CAS  Google Scholar 

  5. Higgins SL, Hummel JD, Niazi IK, et al. Cardiac resynchronization therapy for the treatment of heart failure in patients with intraventricular conduction delay and malignant ventricular tachyarrhythmias. J Am Coll Cardiol. 2003;42:1454–1459.

    Article  PubMed  Google Scholar 

  6. Fried AG, Parker AB, Newton GE, et al. Electrical and hemodynamic correlates of the maximal rate of pressure increase in the human left ventricle. J Card Fail. 1999;5:8–16.

    Article  PubMed  CAS  Google Scholar 

  7. Xiao HB, Roy C, Gibson DG. Nature of ventricular activation in patients with dilated cardiomyopathy: evidence for bilateral bundle branch block. Br Heart J. 1994;72:167–174.

    Article  PubMed  CAS  Google Scholar 

  8. Kass DA. Predicting cardiac resynchronization response by QRS duration: the long and short of it. J Am Coll Cardiol. 2003;42:2125–2127.

    Article  PubMed  Google Scholar 

  9. Achilli A, Sassara M, Ficili S, et al. Long-term effectiveness of cardiac resynchronization therapy in patients with refractory heart failure and narrow QRS complex. J Am Coll Cardiol. 2003;42:2117–2124.

    Article  PubMed  Google Scholar 

  10. Turner MS, Blaesdale RA, Vinereanu D, et al. Electrical and Mechanical components of dyssynchrony in heart failure patients with normal QRS duration and left bundle branch block: impact of left and biventricular pacing. Circulation. 2004;109:2544–2549.

    Article  PubMed  Google Scholar 

  11. Leclerq C, Faris O, Tunin R, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation. 2002;106:1760–1763.

    Article  Google Scholar 

  12. Bleeker GB, Schalij MJ, Molhoek SG, et al. Relationship between QRS duration and left ventricular dyssynchrony in patients with end-stage heart failure. J Cardiovasc Electrophysiol. 2004;15:544–549.

    Article  PubMed  Google Scholar 

  13. Sutherland GR, Hatle L, Claus P, et al. Normal regional strain rate / strain curves. In: Doppler Myocardial Imaging a Textbook. BSWK bvba, Hasselt, Belgium 2006, Chapter 4: p.68–76.

  14. Bax JJ, Molhoek SG, van Erven, et al. Usefulness of myocardial tissue Doppler echocardiography to evaluate left ventricular dyssynchrony before and after biventricular pacing in patients with idiopathic dilated cardiomyopathy. Am J Cardiol. 2003:91:94–97.

    Article  PubMed  Google Scholar 

  15. Bax JJ, Marwick TH, Molhoek SG, et al. Left ventricular dyssynchrony predicts benefit of cardiac resynchronization therapy in patients with end stage heart failure before pacemaker implantation. Am J Cardiol. 2003;92:1238–1240.

    Article  PubMed  Google Scholar 

  16. Yu CM, Fung WH, Lin H, et al. Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am J Cardiol. 2003;91:684–688.

    Article  PubMed  Google Scholar 

  17. Sógaard P, Egeblad H, Kim Y, et al. Tissue Doppler Imaging improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. J Am Coll Cardiol. 2002;40:723–730.

    Article  PubMed  Google Scholar 

  18. Soliman Ol, Theuns DA, Geleijnse ML, et al. Spectral pulsedwave tissue Doppler imaging lateral-to-septal delay fails to predict clinical or echocardiographic outcome after cardiac resynchronization therapy. Europace. 2007;9:113–118.

    Article  PubMed  Google Scholar 

  19. De Boeck BW, Meine M, Leenders GE, et al. Practical and conceptual limitations of tissue Doppler imaging to predict reverse remodeling in cardiac resynchronisation therapy. Eur J Heart Fail. 2008;10:281–290.

    Article  PubMed  Google Scholar 

  20. Chung Es, Leon AR, Tavazzi L, et al. Results of the predictors of response to CRT (Prospect) trial. Circulation. 2008;117:2608–2616.

    Article  PubMed  Google Scholar 

  21. Ansalone G, Giannantoni P, Ricci R, et al. Doppler Myocardial Imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing. J Am Coll Cardiol. 2002;39:489–499.

    Article  PubMed  Google Scholar 

  22. Sógaard P, Egeblad H, Pedersen AK, et al. Sequential versus simultaneous biventricular resynchronization for severe heart failure. Evaluation by Tissue Doppler Imaging. Circulation. 2002;106:2078–2084.

    Article  PubMed  Google Scholar 

  23. Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantification of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr. 1989;2:358–367.

    PubMed  CAS  Google Scholar 

  24. Abd El Raman MY, Hui W, Yigitbasi M, et al. Detection of left ventricular asynchrony in patients with right bundle branch block after repair of Tetralogy of Fallot using tissue Doppler imaging derived strain. J Am Coll Cardiol. 2005;45:915–921.

    Article  Google Scholar 

  25. Kukulski T, Jamal F, D’Hooge J, et al. Acute changes in systolic and diastolic events during clinical coronary angioplasty: a comparison of regional velocity, strain rate, and strain measurement. J Am Soc Echocardiogr. 2002;15:1–12.

    Article  PubMed  Google Scholar 

  26. Popović ZB, Grimm RA, Perlic G, et al. Noninvasive assessment of cardiac resynchronization therapy for congestive heart failure using myocardial strain and left ventricular peak power as parameters of myocardial synchrony and function. J Cardiovasc Electrophysiol. 2002;13:1203–1208.

    Article  PubMed  Google Scholar 

  27. Breithardt OA, Stellbrink C, Herbots L, et al. Cardiac resynchronization therapy can reverse abnormal myocardial strain distribution in patients with heart failure and left bundle branch block. J Am Coll Cardiol. 2003;42:486–494.

    Article  PubMed  Google Scholar 

  28. Yu CM, Fung JW, Zhang Q, et al. Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation. 2004;110:66–73.

    Article  PubMed  Google Scholar 

  29. De Boeck BW, Teske AJ, Meine M, et al. Septal rebound stretch reflects the functional substrate to cardiac resynchronisation therapy and predicts volumetric and neurohormonal response. Eur J Heart Fail. 2009;11:863–871.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheffer, M., van Dessel, P., van Gelder, B. et al. Peak longitudinal strain delay is superior to TDI in the selection of patients for resynchronisation therapy. Neth Heart J 18, 574–582 (2010). https://doi.org/10.1007/s12471-010-0838-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12471-010-0838-6

Keywords

Navigation