Skip to main content
Log in

Nieuwe inzichten in therapeutische mogelijkheden bij diabetes mellitus type 1

Van symptoombestrijding naar personalized medicine

  • Published:
Tijdschrift voor Kindergeneeskunde

Samenvatting

Diabetes mellitus type 1 (T1D) ontstaat ten gevolge van een auto-immuungemedieerde progressieve destructie van insuline-producerende β-cellen. Hoewel de insulinetherapie in de loop der jaren sterk verbeterd is, beperkt deze zich tot symptoombestrijding. Hierbij wordt het doel van glykemische controle meestal niet gehaald.

Het afgelopen decennium zijn vele nieuwe inzichten in de pathogenese van type 1-diabetes ontstaan. Dankzij studies in de pancreatische laesie van T1D-patiënten werd eenduidig bewijs voor een lokale auto-immuunreactie geleverd. Hierbij werd zowel het doelwit als de agressor geïdentificeerd. Bovendien bleken meer β-cellen behouden te zijn dan op basis van β-celfunctie werd verwacht. Dit onderstreept het nut van interventietherapie ten behoeve van β-celpreservatie, ook lang na diagnose. Het meest verrassend bleek de variatie in ontstekingsreacties binnen één pancreas en tussen patiënten.

De ontrafeling van het ziektemechanisme biedt de gelegenheid om interventies te ontwikkelen en te toetsen. Gezien de prevalentie en de lange ziekteduur bestaat nu juist bij kinderen de grootste behoefte om de interventie te toetsen. De regelgeving in Nederland staat dit echter voor deze patiëntengroep niet toe. In het verleden zijn kortetermijnsuccessen geboekt met immunosuppressiva, maar bijwerkingen van een lange afweeronderdrukking lijken onaanvaardbaar. Moderne interventies richten zich dan ook op subtielere immuunmodulatie. De klinische resultaten leken aanvankelijk beperkt. Het trialontwerp hield echter geen rekening met patiënt-en ziekteheterogeniteit, waardoor de effectiviteit van deze therapieën mogelijk wordt onderschat. Met deze nieuwe inzichten van heterogeniteit in patiënt, pathogenese en therapie-uitkomsten zullen aankomende trials zich moeten gaan richten op therapie op maat: personalized medicine, waarbij specifieke aandacht voor interventie bij kinderen wenselijk is.

Summary

Diabetes mellitus type 1 (T1D) is the consequence of immunemediated destruction of the insulin producing β-cells. Despite substantially improved metabolic control with insulin pumps and continuous glucose monitors, the auto-immune destruction of β-cells is not stopped and in most patients optimal glycemic control cannot be achieved.

The last decade has shown significantly increased knowledge of the immunopathology. Histopathologic studies of pancreata of T1D donors revealed infiltrating leukocytes as the likely aggressors. Furthermore at time of diagnosis patients have more β-cells as initially estimated, while β-cell function does not equal β-cell mass. The most surprising finding was the heterogeneous immunopathology within one pancreas and between patients. These new and altered insights in the disease mechanism allow translation into new immunotherapeutic intervention strategies to halt the auto-immune process. As especially children have unmet medical needs and may benefit from immunotherapy it is essential to investigate new interventions in young patients.

Unfortunately Dutch legislation will not allow medical intervention studies in children, safety permitting, even if efficacy in adults cannot be demonstrated.

Since the 1980’s it is known that non-specific immune suppression can temporarily preserve β-cell function in T1D, but at cost of unacceptable risks. In the last decade more elegant immune interventions were designed avoiding the complications of severe immune suppression. Even though intervention trials showed no overall protective effect at first face, efficacy was seen in patient subgroups. It is conceivable that patient and disease heterogeneity influences the efficacy of immunotherapies, reducing the chance of one magic bullet as intervention for the T1D population at large. Therefore, future trials need to identity the most appropriate target population with special attention to children to implement personalized medicine in future T1D care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figuur 1:

Literatuur

  1. Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med. 1986;314: 1360–8.

    Article  Google Scholar 

  2. Nieuwesteeg A, Pouwer F, Kamp R van der, et al. Quality of life of children with type 1 diabetes: a systematic review. Curr Diabetes Rev. 2012;8:434–43.

    Article  PubMed  Google Scholar 

  3. Barnard K, Thomas S, Royle P, et al. Fear of hypoglycaemia in parents of young children with type 1 diabetes: a systematic review. BMC Pediatr. 2010;10:50.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Diabetes Control and Complications Trial Research Group. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. J Pediatr. 1994;125:177–88.

    Article  Google Scholar 

  5. Patterson CC, Dahlquist GG, Gyurus E, et al. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet. 2009;373:2027–33.

    Article  PubMed  Google Scholar 

  6. Veld P in ’t. Insulitis in human type 1 diabetes: The quest for an elusive lesion. Islets. 2011;3:131–8.

    Article  Google Scholar 

  7. Gremizzi C, Vergani A, Paloschi V, et al. Impact of pancreas transplantation on type 1 diabetes-related complications. Curr Opin Organ Transplant. 2010;15:119–23.

    Article  PubMed  Google Scholar 

  8. Imagawa A, Hanafusa T, Miyagawa J, et al. A proposal of three distinct subtypes of type 1 diabetes mellitus based on clinical and pathological evidence. Ann Med. 2000;32:539–43.

    Article  CAS  PubMed  Google Scholar 

  9. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Greenbaum CJ, Beam CA, Boulware D, et al. Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite Type 1 Diabetes TrialNet data. Diabetes. 2012;61:2066–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med. 2009;360:1646–54.

    Article  CAS  PubMed  Google Scholar 

  12. Koeleman BP, Lie BA, Undlien DE, et al. Genotype effects and epistasis in type 1 diabetes and HLADQ trans dimer associations with disease. Genes Immun. 2004;5:381–8.

    Article  CAS  PubMed  Google Scholar 

  13. Erlich H, Valdes AM, Noble J, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes. 2008;57:1084–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Garg G, Tyler JR, Yang JH, et al. Type 1 diabetesassociated IL2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. J Immunol. 2012;188: 4644–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Schmidt MB. Über die Beziehung der langenhans’schen Inseln des Pankreas zum Diabetes Mellitus. Münch Med Wochenschr. 1902;49:51–4.

    Google Scholar 

  16. Coppieters KT, Dotta F, Amirian N, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Arif S, Leete P, Nguyen V, et al. Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes. Diabetes. 2014;63:3835–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Willcox A, Richardson SJ, Bone AJ, et al. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155:173–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Keenan HA, Sun JK, Levine J, et al. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 2010;59:2846–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Foulis AK, Liddle CN, Farquharson MA, et al. The histopathology of the pancreas in type 1 (insulindependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia. 1986;29:267–74.

    Article  CAS  PubMed  Google Scholar 

  21. Willcox A, Richardson SJ, Bone AJ, et al. Evidence of increased islet cell proliferation in patients with recent-onset type 1 diabetes. Diabetologia. 2010;53:2020–8.

    Article  CAS  PubMed  Google Scholar 

  22. Arif S, Tree TI, Astill TP, et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest. 2004;113:451–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Orban T, Sosenko JM, Cuthbertson D, et al. Pancreatic islet autoantibodies as predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care. 2009;32:2269–74.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Ziegler AG, Rewers M, Simell O, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013; 309:2473–9.

    Article  CAS  PubMed  Google Scholar 

  25. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–8.

    Article  CAS  PubMed  Google Scholar 

  26. Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation. Diabetes. 2005;54:2060–9.

    Article  CAS  PubMed  Google Scholar 

  27. Hilbrands R, Huurman VA, Gillard P, et al. Differences in baseline lymphocyte counts and autoreactivity are associated with differences in outcome of islet cell transplantation in type 1 diabetic patients. Diabetes. 2009;58:2267–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Calafiore R, Montanucci P, Basta G. Stem cells for pancreatic beta-cell replacement in diabetes mellitus: actual perspectives. Curr Opin Organ Transplant. 2014;19:162–8.

    Article  CAS  PubMed  Google Scholar 

  29. Feutren G, Papoz L, Assan R, et al. Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre double-blind trial. Lancet. 1986;2:119–24.

    Article  CAS  PubMed  Google Scholar 

  30. Voltarelli JC, Couri CE, Stracieri AB, et al. Autologous hematopoietic stem cell transplantation for type 1 diabetes. Ann N Y Acad Sci. 2008;1150:220–9.

    Article  PubMed  Google Scholar 

  31. Sherry N, Hagopian W, Ludvigsson J, et al. Teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebocontrolled trial. Lancet. 2011;378:487–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Gitelman SE, Gottlieb PA, Rigby MR, et al. Antithymocyte globulin treatment for patients with recent-onset type 1 diabetes: 12-month results of a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 2013;1:306–16.

    Article  CAS  PubMed  Google Scholar 

  33. Orban T, Bundy B, Becker DJ, et al. Co-stimulation modulation with abatacept in patients with recentonset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011;378:412–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Roep BO. New hope for immune intervention therapy in type 1 diabetes. Lancet. 2011;378:376–8.

    Article  PubMed  Google Scholar 

  35. Rigby MR, DiMeglio LA, Rendell MS, et al. Targeting of memory T cells with alefacept in newonset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebocontrolled phase 2 trial. Lancet Diabetes Endocrinol. 2013;1:284–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med. 2009;361:2143–52.

    Article  CAS  PubMed  Google Scholar 

  37. Moran A, Bundy B, Becker DJ, et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebocontrolled trials. Lancet. 2013;381:1905–15.

    Article  CAS  PubMed  Google Scholar 

  38. Rosenzwajg M, Churlaud G, Hartemann A, et al. Interleukin 2 in the pathogenesis and therapy of type 1 diabetes. Curr Diab Rep. 2014;14:553.

    Article  PubMed  Google Scholar 

  39. Skyler JS, Krischer JP, Wolfsdorf J, et al. Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial–Type 1. Diabetes Care. 2005;28:1068–76.

    Article  CAS  PubMed  Google Scholar 

  40. Fourlanos S, Perry C, Gellert SA, et al. Evidence that nasal insulin induces immune tolerance to insulin in adults with autoimmune diabetes. Diabetes. 2011;60:1237–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Nanto-Salonen K, Kupila A, Simell S, et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet. 2008;372:1746–55.

    Article  PubMed  Google Scholar 

  42. Coppieters KT, Harrison LC, von Herrath MG. Trials in type 1 diabetes: Antigen-specific therapies. Clin Immunol. 2013;149:345–55.

    Article  CAS  PubMed  Google Scholar 

  43. Ludvigsson J, Krisky D, Casas R, et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N Engl J Med. 2012;366:433–42.

    Article  CAS  PubMed  Google Scholar 

  44. Ludvigsson J, Faresjo M, Hjorth M, et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med. 2008;359:1909–20.

    Article  CAS  PubMed  Google Scholar 

  45. Raz I, Elias D, Avron A, et al. Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (Dia-Pep277): a randomised, double-blind, phase II trial. Lancet. 2001;358:1749–53.

    Article  CAS  PubMed  Google Scholar 

  46. Bresson D, Togher L, Rodrigo E, et al. Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J Clin Invest. 2006;116:1371–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Nikolic T, Roep BO. Regulatory multitasking of tolerogenic dendritic cells – lessons taken from vitamin d3-treated tolerogenic dendritic cells. Front Immunol. 2013;4:113.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Getts DR, Martin AJ, McCarthy DP, et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol. 2012;30:1217–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Wilson DM, Xing D, Cheng J, et al. Persistence of individual variations in glycated hemoglobin: analysis of data from the Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Randomized Trial. Diabetes Care. 2011;34: 1315–7.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. van Heiningen.

Additional information

Auteurs

Drs. Jacqueline van Heiningen, Fleur M. Keij en prof.dr. Bart O. Roep, afdeling Immunohematologie en Bloedtransfusie, Leids Universitair Medisch Centrum, Leiden.

Correspondentieadres: J. van Heiningen, afdeling Immunohematologie en Bloedtransfusie, LUMC, Leiden,j.van_heiningen@lumc.nl. Belangenconflict: geen gemeld.

Financiële ondersteuning: Diabetes Fonds Nederland, Stichting diabetesonderzoek in Nederland (DON) en Juvenile Diabetes Research Foundation(JDRF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Heiningen, J., Keij, F. & Roep, B. Nieuwe inzichten in therapeutische mogelijkheden bij diabetes mellitus type 1. Tijdschr Kindergeneeskd 83, 9–17 (2015). https://doi.org/10.1007/s12456-015-0004-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12456-015-0004-6

Navigation