Skip to main content

Advertisement

Log in

Molecular Imaging of Inflammation in Ischemic Heart Disease

  • Molecular Imaging (P Nguyen and J Wu, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

A Correction to this article was published on 16 May 2018

This article has been updated

Abstract

Purpose of Review

Ischemic heart disease is caused by atherosclerosis, the build-up of plaque in the coronary arteries, which can lead to the development of heart attacks and heart muscle damage. Despite the advent of medical and surgical therapy to prevent and treat atherosclerosis and its adverse clinical effects, ischemic heart disease remains a leading cause of morbidity and mortality. Recent studies have suggested that the immune system may play a greater role in the development of plaque rupture and adverse left ventricular remodeling after myocardial infarction. Understanding the molecular processes by which inflammation contributes to the pathophysiology of ischemic heart disease is, therefore, worthwhile. This review focuses on new molecular imaging techniques to visualize immune cells to study their contribution to ischemic heart disease.

Recent Findings

A common technique applied to imaging inflammation in ischemic heart disease is targeting the up-regulation and trafficking of immune cells, which may contribute to the adverse consequences associated with atherosclerosis. In the past 5 years, advances in cell labeling for imaging with PET and MRI, including radioisotopes and nanoparticles, have confirmed that inflammatory cells can be visualized in vivo and in greater abundance in unstable cardiovascular disease and in areas of ischemic damage. The major criticisms of these studies to date include their small sample size, lack of histological correlation, limited association with long-term outcomes, and bias toward macrophage imaging.

Summary

While much progress has been made in imaging inflammation in ischemic heart disease over the past 5 years, additional studies in larger cohorts with histological validation and outcome correlation are needed. Nevertheless, imaging inflammation using PET or MRI has the potential to become an important adjunct tool to improve the diagnosis, risk stratification, and therapeutic monitoring of patients with ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 16 May 2018

    The original version of this article unfortunately contained mistakes in the abbreviations and body of the text. The Authors had correctly pointed out these errors at the proof stage but were regretfully not implemented at the production level.

Abbreviations

ACS:

acute coronary syndrome

CHD:

coronary heart disease

11C-PK11195:

11C-N-methyl-N-[1-methylpropyl]-1-[2-chlorophenyl]-isoquinoline-3-carboxamide

CT:

computed tomography

DOTATATE:

[1,4,7,10-tetraazacyclododecane-N, N′, N″, N″′-tetraacetic acid]-d-Phe1, Tyr3-octreotate

FDG:

2-deoxy-2-[18F]fluoro-D-glucose

18F-GE-180:

S-N, N-diethyl-9-[2-18F-fluoroethyl]-5-methoxy 2,3,4,9-tetrahydro-1H-carbamazole-4-carboxamide

IHD:

ischemic heart disease

LOX-1:

lectin-like oxidized LDL receptor-1

LV:

left ventricular

MRI:

magnetic resonance imaging

NPR-C:

natriuretic peptide receptor C

PEG:

polyethylene glycol

PET:

positron emission tomography

SPECT:

single-photon emission computed tomography

SPIONs:

superparamagnetic iron oxide nanoparticles

SST:

somatostatin

SUVmean:

mean standardized uptake value

TSPOs:

translocator proteins

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hansson GK. Inflammation atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.

    Article  PubMed  CAS  Google Scholar 

  3. Hiari N, Rudd JH. FDG PET imaging and cardiovascular inflammation. Curr Cardiol Rep. 2011;13(1):43–8.

    Article  PubMed  Google Scholar 

  4. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105(23):2708–11.

    Article  PubMed  CAS  Google Scholar 

  5. Tarkin JM, Joshi FR, Rudd JH. PET imaging of inflammation in atherosclerosis. Nat Rev Cardiol. 2014;11(8):443–57.

    Article  PubMed  CAS  Google Scholar 

  6. Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol. 2016;67(17):2050–60.

    Article  PubMed  Google Scholar 

  7. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101(25):2981–8.

    Article  PubMed  CAS  Google Scholar 

  8. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A. 2000;97(16):9226–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41(4):661–81.

    PubMed  CAS  Google Scholar 

  10. Ridker PM, Everett BM, Thuren T, MacFadyen J, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.

    Article  PubMed  CAS  Google Scholar 

  11. Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater. 2014;13(2):125–38.

    Article  PubMed  CAS  Google Scholar 

  12. Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci U S A. 2017;114(9):2325–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Calcagno C, Ramachandran S, Millon A, Robson PM, Mani V, Fayad Z. Gadolinium-based contrast agents for vessel wall magnetic resonance imaging (MRI) of atherosclerosis. Curr Cardiovasc Imaging Rep. 2013;6(1):11–24.

    Article  PubMed  Google Scholar 

  14. Marangoni VS, Neumann O, Henderson L, Kaffes CC, Zhang H, Zhang R, et al. Enhancing T1 magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle. Proc Natl Acad Sci U S A. 2017;114(27):6960–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Huang G, Li H, Chen J, et al. Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Nano. 2014;6(17):10404–12.

    CAS  Google Scholar 

  16. Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med. 2012;209(1):123–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Montet-Abou K, Daire JL, Hyacinthe JN, Jorge-Costa M, Grosdemange K, Mach F, et al. In vivo labelling of resting monocytes in the reticuloendothelial system with fluorescent iron oxide nanoparticles prior to injury reveals that they are mobilized to infarcted myocardium. Eur Heart J. 2010;31(11):1410–20.

    Article  PubMed  CAS  Google Scholar 

  18. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Xia W, Hilgenbrink AR, Matteson EL, Lockwood MB, Cheng JX, Low PS. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood. 2009;113(2):438–46.

    Article  PubMed  CAS  Google Scholar 

  20. Ayala-Lopez W, Xia W, Varghese B, Low PS. Imaging of atherosclerosis in apoliprotein e knockout mice: targeting of a folate-conjugated radiopharmaceutical to activated macrophages. J Nucl Med. 2010;51(5):768–74.

    Article  PubMed  Google Scholar 

  21. Jager NA, Westra J, van Dam GM, Teteloshvili N, Tio RA, Breek JC, et al. Targeted folate receptor beta fluorescence imaging as a measure of inflammation to estimate vulnerability within human atherosclerotic carotid plaque. J Nucl Med. 2012;53(8):1222–9.

    Article  PubMed  CAS  Google Scholar 

  22. Jager NA, Westra J, Golestani R, van Dam GM, Low PS, Tio RA, et al. Folate receptor-beta imaging using 99mTc-folate to explore distribution of polarized macrophage populations in human atherosclerotic plaque. J Nucl Med. 2014;55(12):1945–51.

    Article  PubMed  CAS  Google Scholar 

  23. Shah PK, Chyu KY, Dimayuga PC, Nilsson J. Vaccine for atherosclerosis. J Am Coll Cardiol. 2014;64(25):2779–91.

    Article  PubMed  CAS  Google Scholar 

  24. Griessinger CM, Kehlbach R, Bukala D, Wiehr S, Bantleon R, Cay F, et al. In vivo tracking of Th1 cells by PET reveals quantitative and temporal distribution and specific homing in lymphatic tissue. J Nucl Med. 2014;55(2):301–7.

    Article  PubMed  CAS  Google Scholar 

  25. Koya RC, Mok S, Comin-Anduix B, Chodon T, Radu CG, Nishimura MI, et al. Kinetic phases of distribution and tumor targeting by T cell receptor engineered lymphocytes inducing robust antitumor responses. Proc Natl Acad Sci U S A. 2010;107(32):14286–91.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aarntzen EH, Srinivas M, De Wilt JH, et al. Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3′-fluoro-3′-deoxy-thymidine ([18F]FLT) PET imaging. Proc Natl Acad Sci U S A. 2011;108(45):18396–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Malviya G, D'Alessandria C, Bonanno E, Vexler V, Massari R, Trotta C, et al. Radiolabeled humanized anti-CD3 monoclonal antibody visilizumab for imaging human T-lymphocytes. J Nucl Med. 2009;50(10):1683–91.

    Article  PubMed  CAS  Google Scholar 

  28. Mall S, Yusufi N, Wagner R, Klar R, Bianchi H, Steiger K, et al. Immuno-PET imaging of engineered human T cells in tumors. Cancer Res. 2016;76(14):4113–23.

    Article  PubMed  CAS  Google Scholar 

  29. Tavare R, McCracken MN, Zettlitz KA, et al. Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc Natl Acad Sci U S A. 2014;111(3):1108–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tavare R, McCracken MN, Zettlitz KA, et al. Immuno-PET of murine T cell reconstitution postadoptive stem cell transplantation using anti-CD4 and anti-CD8 cys-diabodies. J Nucl Med. 2015;56(8):1258–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Griessinger CM, Maurer A, Kesenheimer C, Kehlbach R, Reischl G, Ehrlichmann W, et al. 64Cu antibody-targeting of the T-cell receptor and subsequent internalization enables in vivo tracking of lymphocytes by PET. Proc Natl Acad Sci U S A. 2015;112(4):1161–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sadat U, Howarth SP, Usman A, Tang TY, Graves MJ, Gillard JH. Sequential imaging of asymptomatic carotid atheroma using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging: a feasibility study. J Stroke Cerebrovasc Dis. 2013;22(8):e271–6.

    Article  PubMed  Google Scholar 

  33. Mojtahedi A, Alavi A, Thamake S, Amerinia R, Ranganathan D, Tworowska I, et al. Assessment of vulnerable atherosclerotic and fibrotic plaques in coronary arteries using 68Ga-DOTATATE PET/CT. Am J Nucl Med Mol Imaging. 2015;5(1):65–71.

    PubMed  CAS  Google Scholar 

  34. Pedersen SF, Sandholt BV, Keller SH, Hansen AE, Clemmensen AE, Sillesen H, et al. 64Cu-DOTATATE PET/MRI for detection of activated macrophages in carotid atherosclerotic plaques: studies in patients undergoing endarterectomy. Arterioscler Thromb Vasc Biol. 2015;35(7):1696–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Malmberg C, Ripa RS, Johnbeck CB, Knigge U, Langer SW, Mortensen J, et al. 64Cu-DOTATATE for noninvasive assessment of atherosclerosis in large arteries and its correlation with risk factors: head-to-head comparison with 68Ga-DOTATOC in 60 patients. J Nucl Med. 2015;56(12):1895–900.

    Article  PubMed  CAS  Google Scholar 

  36. Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J Am Coll Cardiol. 2017;69(14):1774–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wan MYS, Endozo R, Michopoulou S, Shortman R, Rodriguez-Justo M, Menezes L, et al. PET/CT imaging of unstable carotid plaque with 68Ga-labeled somatostatin receptor ligand. J Nucl Med. 2017;58(5):774–80.

    Article  PubMed  CAS  Google Scholar 

  38. Alam SR, Shah AS, Richards J, et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience. Circ Cardiovasc Imaging. 2012;5(5):559–65.

    Article  PubMed  Google Scholar 

  39. Rischpler C, Dirschinger RJ, Nekolla SG, Kossmann H, Nicolosi S, Hanus F, et al. Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ. Cardiovasc Imaging. 2016;9(4):e004316.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stirrat CG, Alam SR, MacGillivray TJ, et al. Ferumoxytol-enhanced magnetic resonance imaging assessing inflammation after myocardial infarction. Heart. 2017;103(19):1528–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Menezes LJ, Kotze CW, Hutton BF, Endozo R, Dickson JC, Cullum I, et al. Vascular inflammation imaging with 18F-FDG PET/CT: when to image? J Nucl Med. 2009;50(6):854–7.

    Article  PubMed  Google Scholar 

  42. Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging. 2010;3(4):388–97.

    Article  PubMed  Google Scholar 

  43. Baber U, Mehran R, Sartori S, Schoos MM, Sillesen H, Muntendam P, et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study. J Am Coll Cardiol. 2015;65(11):1065–74.

    Article  PubMed  Google Scholar 

  44. Folco EJ, Sheikine Y, Rocha VZ, Christen T, Shvartz E, Sukhova GK, et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. J Am Coll Cardiol. 2011;58(6):603–14.

    Article  PubMed  CAS  Google Scholar 

  45. Bird JL, Izquierdo-Garcia D, Davies JR, et al. Evaluation of translocator protein quantification as a tool for characterising macrophage burden in human carotid atherosclerosis. Atherosclerosis. 2010;210(2):388–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Boutin H, Murray K, Pradillo J, Maroy R, Smigova A, Gerhard A, et al. 18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke. Eur J Nucl Med Mol Imaging. 2015;42(3):503–11.

    Article  PubMed  CAS  Google Scholar 

  47. Guo Q, Colasanti A, Owen DR, Onega M, Kamalakaran A, Bennacef I, et al. Quantification of the specific translocator protein signal of 18F-PBR111 in healthy humans: a genetic polymorphism effect on in vivo binding. J Nucl Med. 2013;54(11):1915–23.

    Article  PubMed  CAS  Google Scholar 

  48. Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, Kang BY, et al. Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circulation. Cardiovasc Imaging. 2010;3(4):464–72.

    Article  CAS  Google Scholar 

  49. Tahara N, Mukherjee J, de Haas HJ, Petrov AD, Tawakol A, Haider N, et al. 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat Med. 2014;20(2):215–9.

    Article  PubMed  CAS  Google Scholar 

  50. Howarth SP, Tang TY, Trivedi R, et al. Utility of USPIO-enhanced MR imaging to identify inflammation and the fibrous cap: a comparison of symptomatic and asymptomatic individuals. Eur J Radiol. 2009;70(3):555–60.

    Article  PubMed  CAS  Google Scholar 

  51. Tang TY, Howarth SP, Miller SR, et al. The ATHEROMA (atorvastatin therapy: effects on reduction of macrophage activity) study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol. 2009;53(22):2039–50.

    Article  PubMed  CAS  Google Scholar 

  52. Woodard PK, Liu Y, Pressly ED, Luehmann HP, Detering L, Sultan DE, et al. Design and modular construction of a polymeric nanoparticle for targeted atherosclerosis positron emission tomography imaging: a story of 25% 64Cu-CANF-Comb. Pharm Res. 2016;33(10):2400–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, et al. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res. 2013;112(6):891–9.

    Article  PubMed  CAS  Google Scholar 

  54. Hilgendorf I, Swirski FK, Robbins CS. Monocyte fate in atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35(2):272–9.

    Article  PubMed  CAS  Google Scholar 

  55. Weirather J, Hofmann UD, Beyersdorf N, et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res. 2014;115(1):55–67.

    Article  PubMed  CAS  Google Scholar 

  56. Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guérin C, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19(10):1273–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, et al. Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol. 2010;55(15):1629–38.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59(2):153–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

We would like to thank the National Institutes of Health grant R01 HL134830-01 (PKN) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia K. Nguyen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

The original version of this article was revised: It contained mistakes in the abbreviations and body of the text. Full information regarding corrections made can be found in the erratum/correction article for this article.

This article is part of the Topical Collection on Molecular Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakerman, I., Wardak, M. & Nguyen, P.K. Molecular Imaging of Inflammation in Ischemic Heart Disease. Curr Cardiovasc Imaging Rep 11, 13 (2018). https://doi.org/10.1007/s12410-018-9452-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-018-9452-6

Keywords

Navigation