Skip to main content

Advertisement

Log in

Cardiovascular PET/MRI: Technical Considerations and Outlook

  • Metabolic Syndrome and Diabetes (V Dilsizian and T Schindler, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We aim to provide insights into current and future applications of cardiac PET/MRI and the logistical issues one should consider when implementing a program using this still novel technology.

Recent Findings

Since their introduction around 15 years ago, PET/CT and SPECT/CT hybrid imaging devices saw high clinical utilization, which was driven clearly by oncology. Fortunately, the basic availability in a clinical setting enabled the investigation of the cardiac imaging perspective and facilitated numerous research activities. Given the fact that cardiac MRI is a very attractive research field with an increasing clinical utilization, PET/MRI raised the expectation of innovative imaging scenarios with synergistic applications. Integrating molecular imaging with a multitude of PET agents and the high temporal and spatial resolution of MRI are ideally suited for novel applications having especially a reduced burden of ionizing radiation and potentially a lack of contrast media in mind.

Summary

The technical complexity and consequentially the considerable amount of monetary investment resulted until today in a limited availability and experience. However, the potential of these systems are currently unsurpassed as they really implement a “best of both worlds” approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Shaw LJ, Hendel R, Borges-Neto S, Lauer MS, Alazraki N, Burnette J, et al. Prognostic value of normal exercise and adenosine (99m)Tc-tetrofosmin SPECT imaging: results from the multicenter registry of 4,728 patients. J Nucl Med. 2003;44(2):134–9.

    PubMed  Google Scholar 

  2. Slomka PJ, Berman DS, Germano G. New cardiac cameras: single-photon emission CT and PET. Semin Nucl Med. 2014;44(4):232–51. https://doi.org/10.1053/j.semnuclmed.2014.04.003

    Article  PubMed  Google Scholar 

  3. Palyo RJ, Sinusas AJ, Liu YH. High-sensitivity and high-resolution SPECT/CT systems provide substantial dose reduction without compromising quantitative precision for assessment of myocardial perfusion and function. J Nucl Med. 2016;57(6):893–9. https://doi.org/10.2967/jnumed.115.164632

    Article  PubMed  Google Scholar 

  4. Kolh P, Windecker S. ESC/EACTS myocardial revascularization guidelines 2014. Eur Heart J. 2014;35(46):3235–6. https://doi.org/10.1093/eurheartj/ehu422

    Article  PubMed  Google Scholar 

  5. Gaemperli O, Kaufmann PA, Alkadhi H. Cardiac hybrid imaging. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S91–103. https://doi.org/10.1007/s00259-013-2566-9

    Article  PubMed  Google Scholar 

  6. Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012;60(16):1546–55. https://doi.org/10.1016/j.jacc.2012.05.052

    Article  PubMed  Google Scholar 

  7. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2016;18(1):89. https://doi.org/10.1186/s12968-016-0308-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saeed M, Liu H, Liang CH, Wilson MW. Magnetic resonance imaging for characterizing myocardial diseases. Int J Cardiovasc Imaging. 2017; https://doi.org/10.1007/s10554-017-1127-x

  9. Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, et al. Recent advances in cardiovascular magnetic resonance: techniques and applications. Circ Cardiovasc Imaging. 2017;10(6) https://doi.org/10.1161/CIRCIMAGING.116.003951.

  10. Hyafil F, Pelisek J, Laitinen I, Schottelius M, Mohring M, Doring Y, et al. Imaging the cytokine receptor CXCR4 in atherosclerotic plaques with the radiotracer 68Ga-pentixafor for PET. J Nucl Med. 2017;58(3):499–506. https://doi.org/10.2967/jnumed.116.179663

    Article  PubMed  Google Scholar 

  11. Higuchi T, Yousefi BH, Reder S, Beschorner M, Laitinen I, Yu M, et al. Myocardial kinetics of a novel [(18)F]-labeled sympathetic nerve PET tracer LMI1195 in the isolated perfused rabbit heart. JACC Cardiovasc Imaging. 2015;8(10):1229–31. https://doi.org/10.1016/j.jcmg.2014.11.013

    Article  PubMed  Google Scholar 

  12. • Nekolla SG, Martinez-Moeller A, Saraste A. PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S121–30. https://doi.org/10.1007/s00259-008-0980-1. Although published several years ago—even prior the availability of fully integrated PET/MR systems—most of the items mentioned in this review are still valid today.

    Article  PubMed  Google Scholar 

  13. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54(3):402–15. https://doi.org/10.2967/jnumed.112.105353.

    Article  CAS  PubMed  Google Scholar 

  14. • Rischpler C, Nekolla SG, Kunze KP, Schwaiger M. PET/MRI of the heart. Semin Nucl Med. 2015;45(3):234–47. https://doi.org/10.1053/j.semnuclmed.2014.12.004. This reviews summarizes the more clinical aspects of cardiac MRI in a comprehensive way.

    Article  PubMed  Google Scholar 

  15. Schwaiger M, Kunze K, Rischpler C, Nekolla SG. PET/MR: yet another Tesla? J Nucl Cardiol. 2016; https://doi.org/10.1007/s12350-016-0665-2.

  16. Schneider S, Batrice A, Rischpler C, Eiber M, Ibrahim T, Nekolla SG. Utility of multimodal cardiac imaging with PET/MRI in cardiac sarcoidosis: implications for diagnosis, monitoring and treatment. Eur Heart J. 2014;35(5):312. https://doi.org/10.1093/eurheartj/eht335

    Article  PubMed  Google Scholar 

  17. von Olshausen G, Hyafil F, Langwieser N, Laugwitz KL, Schwaiger M, Ibrahim T. Detection of acute inflammatory myocarditis in Epstein Barr virus infection using hybrid 18F-fluoro-deoxyglucose-positron emission tomography/magnetic resonance imaging. Circulation. 2014;130(11):925–6. https://doi.org/10.1161/CIRCULATIONAHA.114.011000.

    Article  Google Scholar 

  18. Nensa F, Kloth J, Tezgah E, Poeppel TD, Heusch P, Goebel J, et al. Feasibility of FDG-PET in myocarditis: comparison to CMR using integrated PET/MRI. J Nucl Cardiol. 2016; https://doi.org/10.1007/s12350-016-0616-y.

  19. Ibrahim T, Nekolla SG, Langwieser N, Rischpler C, Groha P, Laugwitz KL, et al. Simultaneous positron emission tomography/magnetic resonance imaging identifies sustained regional abnormalities in cardiac metabolism and function in stress-induced transient midventricular ballooning syndrome: a variant of Takotsubo cardiomyopathy. Circulation. 2012;126(21):e324–6. https://doi.org/10.1161/CIRCULATIONAHA.112.134346

    Article  PubMed  Google Scholar 

  20. Langwieser N, Sinnecker D, Rischpler C, Batrice A, van Marwick S, Schwaiger M, et al. Treatment of acute left main occlusion by early revascularization combined with extracorporeal circulation achieves substantial myocardial salvage as assessed by simultaneous positron emission tomography/magnetic resonance imaging. Resuscitation. 2014;85(10):e171–3. https://doi.org/10.1016/j.resuscitation.2014.07.004

    Article  PubMed  Google Scholar 

  21. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002;105(2):162–7.

    Article  PubMed  Google Scholar 

  22. Rischpler C, Langwieser N, Souvatzoglou M, Batrice A, van Marwick S, Snajberk J, et al. PET/MRI early after myocardial infarction: evaluation of viability with late gadolinium enhancement transmurality vs. 18F-FDG uptake. Eur Heart J Cardiovasc Imaging. 2015;16(6):661–9. https://doi.org/10.1093/ehjci/jeu317

    PubMed  Google Scholar 

  23. Rischpler C, Dirschinger RJ, Nekolla SG, Kossmann H, Nicolosi S, Hanus F, et al. Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ Cardiovasc Imaging. 2016;9(4):e004316. https://doi.org/10.1161/CIRCIMAGING.115.004316

    PubMed  PubMed Central  Google Scholar 

  24. • Dweck MR, Abgral R, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovascular Imaging. 2017; https://doi.org/10.1016/j.jcmg.2017.02.021. The cardiac involvement of sarcoidosis might represent one of the most attractive applications of cardiac PET/MRI.

  25. Schindler TH. Emergence of integrated cardiac magnetic resonance/positron emission tomography imaging as the preferred imaging modality in cardiac sarcoidosis. JACC Cardiovasc Imaging. 2017; https://doi.org/10.1016/j.jcmg.2017.02.022.

  26. Hyafil F, Schindler A, Sepp D, Obenhuber T, Bayer-Karpinska A, Boeckh-Behrens T, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined (18)F-FDG PET/MR imaging. Eur J Nucl Med Mol Imaging. 2016;43(2):270–9. https://doi.org/10.1007/s00259-015-3201-8.

    Article  PubMed  Google Scholar 

  27. Dregely I, Koppara T, Nekolla SG, Nahrig J, Kuhs K, Langwieser N, et al. Observations with simultaneous 18F-FDG PET and MR imaging in peripheral artery disease. JACC Cardiovasc Imaging. 2016; https://doi.org/10.1016/j.jcmg.2016.06.005.

  28. Einspieler I, Thurmel K, Pyka T, Eiber M, Wolfram S, Moog P, et al. Imaging large vessel vasculitis with fully integrated PET/MRI: a pilot study. Eur J Nucl Med Mol Imaging. 2015;42(7):1012–24. https://doi.org/10.1007/s00259-015-3007-8.

    Article  CAS  PubMed  Google Scholar 

  29. Einspieler I, Thurmel K, Eiber M, Essler M. First experience of imaging large vessel vasculitis with fully integrated positron emission tomography/MRI. Circ Cardiovasc Imaging. 2013;6(6):1117–9. https://doi.org/10.1161/CIRCIMAGING.113.000778.

    Article  PubMed  Google Scholar 

  30. Rischpler C, Nekolla SG, Kossmann H, Dirschinger RJ, Schottelius M, Hyafil F, et al. Upregulated myocardial CXCR4-expression after myocardial infarction assessed by simultaneous GA-68 pentixafor PET/MRI. J Nucl Cardiol. 2016;23(1):131–3. https://doi.org/10.1007/s12350-015-0347-5.

    Article  PubMed  Google Scholar 

  31. Pichler B, Lorenz E, Mirzoyan R, Pimpl W, Roder F, Schwaiger M, et al. Performance test of a LSO-APD PET module in a 9.4 Tesla magnet. IEEE Nucl Sci Symp Conf Rec. 1998;1 & 2:1237–9.

    Google Scholar 

  32. Weirich C, Brenner D, Scheins J, Besancon E, Tellmann L, Herzog H, et al. Analysis and correction of count rate reduction during simultaneous MR-PET measurements with the BrainPET scanner. IEEE Trans Med Imaging. 2012;31(7):1372–80. https://doi.org/10.1109/Tmi.2012.2188903.

    Article  PubMed  Google Scholar 

  33. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52(12):1914–22. https://doi.org/10.2967/jnumed.111.092726.

    Article  PubMed  Google Scholar 

  34. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47(4):639–47.

    PubMed  Google Scholar 

  35. Davison H, Ter Voert EE, de Galiza BF, Veit-Haibach P, Delso G. Incorporation of time-of-flight information reduces metal artifacts in simultaneous positron emission tomography/magnetic resonance imaging: a simulation study. Investig Radiol. 2015; https://doi.org/10.1097/RLI.0000000000000146.

  36. Levin C, Deller T, Peterson W, Maramraju SH, Kim C, Prost R. Initial results of simultaneous whole-body ToF PET/MR. J Nucl Med. 2014;55(Supplement 1):660.

    Google Scholar 

  37. Martinez-Moller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG. Artifacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions. J Nucl Med. 2007;48(2):188–93.

    PubMed  Google Scholar 

  38. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med. 2007;48(7):1112–21.

    Article  PubMed  Google Scholar 

  39. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50(4):520–6. https://doi.org/10.2967/jnumed.108.054726.

    Article  PubMed  Google Scholar 

  40. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Bornert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38(1):138–52. https://doi.org/10.1007/s00259-010-1603-1.

    Article  CAS  PubMed  Google Scholar 

  41. Nuyts J, Michel C, Fenchel M, Bal G, Watson C. Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans Med Imaging. 2013;32(2):237–46. https://doi.org/10.1109/TMI.2012.2220376.

  42. Delso G, Martinez-Moller A, Bundschuh RA, Nekolla SG, Ziegler SI. The effect of limited MR field of view in MR/PET attenuation correction. Med Phys. 2010;37(6):2804–12.

    Article  Google Scholar 

  43. Blumhagen JO, Ladebeck R, Fenchel M, Scheffler K. MR-based field-of-view extension in MR/PET: B0 homogenization using gradient enhancement (HUGE). Magn Reson Med. 2013;70(4):1047–57. https://doi.org/10.1002/mrm.24555.

    Article  PubMed  Google Scholar 

  44. Blumhagen JO, Braun H, Ladebeck R, Fenchel M, Faul D, Scheffler K, et al. Field of view extension and truncation correction for MR-based human attenuation correction in simultaneous MR/PET imaging. Med Phys. 2014;41(2):022303. https://doi.org/10.1118/1.4861097.

    Article  PubMed  Google Scholar 

  45. Wollenweber S, Ambwani S, Lonn AHR, Shanbag DD, Thiruvenkadam S, Kuasshik S, et al. Comparison of 4-class and continuous fat/water methods for whole-body, MR-based PET attenuation correction. IEEE Trans Nucl Sci. 2013;40(5):3391–8.

    Article  Google Scholar 

  46. Marshall HR, Prato FS, Deans L, Theberge J, Thompson TR, Stodilka RZ. Variable lung density consideration in attenuation correction of whole-body PET/MRI. J Nucl Med. 2012;53(6):977–84. https://doi.org/10.2967/jnumed.111.098350.

    Article  PubMed  Google Scholar 

  47. Mehranian A, Zaidi H. Clinical assessment of emission- and segmentation-based MR-guided attenuation correction in whole-body time-of-flight PET/MR imaging. J Nucl Med. 2015;56(6):877–83. https://doi.org/10.2967/jnumed.115.154807.

  48. Schramm G, Maus J, Hofheinz F, Petr J, Lougovski A, Beuthien-Baumann B, et al. Evaluation and automatic correction of metal-implant-induced artifacts in MR-based attenuation correction in whole-body PET/MR imaging. Phys Med Biol. 2014;59(11):2713–26. https://doi.org/10.1088/0031-9155/59/11/2713.

    Article  CAS  PubMed  Google Scholar 

  49. Fürst S, Souvatzoglu M, Rischpler C, Ziegler S, Schwaiger M, Nekolla S. Effects of MR contrast agents on attenuation map generation and cardiac PET quantification in PET/MR. J Nucl Med. 2012;53(Supplement 1):139.

    Google Scholar 

  50. Beyer T, Lassen ML, Boellaard R, Delso G, Yaqub M, Sattler B, et al. Investigating the state-of-the-art in whole-body MR-based attenuation correction: an intra-individual, inter-system, inventory study on three clinical PET/MR systems. Magn Reson Mater Phys. 2016;29(1):75–87. https://doi.org/10.1007/s10334-015-0505-4.

    Article  Google Scholar 

  51. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Furst S, Martinez-Moller A, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med. 2012;53(6):845–55. https://doi.org/10.2967/jnumed.111.098608.

    Article  PubMed  Google Scholar 

  52. Inglese E, Leva L, Matheoud R, Sacchetti G, Secco C, Gandolfo P, et al. Spatial and temporal heterogeneity of regional myocardial uptake in patients without heart disease under fasting conditions on repeated whole-body 18F-FDG PET/CT. J Nucl Med. 2007;48(10):1662–9. https://doi.org/10.2967/jnumed.107.041574.

    Article  PubMed  Google Scholar 

  53. Nensa F, Poeppel TD, Beiderwellen K, Schelhorn J, Mahabadi AA, Erbel R, et al. Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology. 2013; https://doi.org/10.1148/radiol.13130231.

  54. • Oldan JD, Shah SN, Brunken RC, DiFilippo FP, Obuchowski NA, Bolen MA. Do myocardial PET-MR and PET-CT FDG images provide comparable information? J Nucl Cardiol. 2015; https://doi.org/10.1007/s12350-015-0159-7.

  55. • Vontobel J, Liga R, Possner M, Clerc OF, Mikulicic F, Veit-Haibach P, et al. MR-based attenuation correction for cardiac FDG PET on a hybrid PET/MRI scanner: comparison with standard CT attenuation correction. Eur J Nucl Med Mol Imaging. 2015;42(10):1574–80. https://doi.org/10.1007/s00259-015-3089-3. This and the previous reference demonstrate that attenuation correction in PET/MRI in cardiac scans can be successfully implemented for both commercially available systems.

    Article  PubMed  Google Scholar 

  56. Jea L. Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol. 2016;57(2):215–20.

    Google Scholar 

  57. Ladefoged CN, Law I, Anazodo U, St Lawrence K, Izquierdo-Garcia D, Catana C, et al. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. NeuroImage. 2017;147:346–59. https://doi.org/10.1016/j.neuroimage.2016.12.010.

    Article  PubMed  Google Scholar 

  58. Rauscher I, Eiber M, Furst S, Souvatzoglou M, Nekolla SG, Ziegler SI, et al. PET/MR imaging in the detection and characterization of pulmonary lesions: technical and diagnostic evaluation in comparison to PET/CT. J Nucl Med. 2014;55(5):724–9. https://doi.org/10.2967/jnumed.113.129247.

    Article  CAS  PubMed  Google Scholar 

  59. Marshall HR, Prato FS, Deans L, Theberge J, Thompson RT, Stodilka RZ. Variable lung density consideration in attenuation correction of whole-body PET/MRI. J Nucl Med. 2012;53(6):977–84. https://doi.org/10.2967/jnumed.111.098350.

    Article  PubMed  Google Scholar 

  60. Delso G, Martinez-Moller A, Bundschuh RA, Ladebeck R, Candidus Y, Faul D, et al. Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner. Phys Med Biol. 2010;55(15):4361–74. https://doi.org/10.1088/0031-9155/55/15/011.

    Article  CAS  PubMed  Google Scholar 

  61. Furst S, Souvatzoglou M, Martinez-Moller A, Schwaiger M, Nekolla SG, Ziegler SI. Impact of flexible body surface coil and patient table on PET quantification and image quality in integrated PET/MR. Nuklearmedizin Nucl Med. 2014;53(3):79–87. https://doi.org/10.3413/Nukmed-0608-13-07.

    Article  CAS  Google Scholar 

  62. Paulus DH, Tellmann L, Quick HH. Towards improved hardware component attenuation correction in PET/MR hybrid imaging. Phys Med Biol. 2013;58(22):8021–40. https://doi.org/10.1088/0031-9155/58/22/8021.

    Article  CAS  PubMed  Google Scholar 

  63. Dregely I, Lanz T, Metz S, Mueller MF, Kuschan M, Nimbalkar M, et al. A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer. Eur Radiol. 2015;25(4):1154–61. https://doi.org/10.1007/s00330-014-3445-x.

    Article  PubMed  Google Scholar 

  64. DiFilippo FP, Brunken RC. Do implanted pacemaker leads and ICD leads cause metal-related artifact in cardiac PET/CT? J Nucl Med. 2005;46(3):436–43.

    PubMed  Google Scholar 

  65. Buchbender C, Hartung-Knemeyer V, Forsting M, Antoch G, Heusner TA. Positron emission tomography (PET) attenuation correction artefacts in PET/CT and PET/MRI. Br J Radiol. 2013;86(1025):20120570. https://doi.org/10.1259/bjr.20120570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cohen JD, Costa HS, Russo RJ. Determining the risks of magnetic resonance imaging at 1.5 tesla for patients with pacemakers and implantable cardioverter defibrillators. Am J Cardiol. 2012;110(11):1631–6. https://doi.org/10.1016/j.amjcard.2012.07.030.

    Article  PubMed  Google Scholar 

  67. Strom JB, Whelan JB, Shen C, Zheng SQ, Mortele KJ, Kramer DB. Safety and utility of magnetic resonance imaging in patients with cardiac implantable electronic devices. Heart Rhythm. 2017; https://doi.org/10.1016/j.hrthm.2017.03.039.

  68. Marinskis G, Bongiorni MG, Dagres N, Dobreanu D, Lewalter T, Blomstrom-Lundqvist C. Performing magnetic resonance imaging in patients with implantable pacemakers and defibrillators: results of a European Heart Rhythm Association survey. Europace. 2012;14(12):1807–9. https://doi.org/10.1093/europace/eus379.

    Article  PubMed  Google Scholar 

  69. Furst S, Grimm R, Hong I, Souvatzoglou M, Casey ME, Schwaiger M, et al. Motion correction strategies for integrated PET/MR. J Nucl Med. 2015;56(2):261–9. https://doi.org/10.2967/jnumed.114.146787.

    Article  PubMed  Google Scholar 

  70. Chun SY, Reese TG, Ouyang JS, Guerin B, Catana C, Zhu XP, et al. MRI-based nonrigid motion correction in simultaneous PET/MRI. J Nucl Med. 2012;53(8):1284–91. https://doi.org/10.2967/jnumed.111.092353.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Slomka PJ, Rubeaux M, Le Meunier L, Dey D, Lazewatsky JL, Pan T, et al. Dual-gated motion-frozen cardiac PET with flurpiridaz F 18. J Nucl Med. 2015;56(12):1876–81. https://doi.org/10.2967/jnumed.115.164285.

    Article  CAS  PubMed  Google Scholar 

  72. Rubeaux M, Joshi NV, Dweck MR, Fletcher A, Motwani M, Thomson LE, et al. Motion correction of 18F-NaF PET for imaging coronary atherosclerotic plaques. J Nucl Med. 2016;57(1):54–9. https://doi.org/10.2967/jnumed.115.162990.

    Article  CAS  PubMed  Google Scholar 

  73. Doris MK, Rubeaux M, Pawade T, Otaki Y, Xie Y, Li D, et al. Motion-corrected imaging of the aortic valve with 18F-NaF PET/CT and PET/MR: a feasibility study. J Nucl Med. 2017; https://doi.org/10.2967/jnumed.117.194597.

  74. Kolbitsch C, Ahlman MA, Davies-Venn C, Evers R, Hansen M, Peressutti D, et al. Cardiac and respiratory motion correction for simultaneous cardiac PET/MR. J Nucl Med. 2017;58(5):846–52. https://doi.org/10.2967/jnumed.115.171728.

    Article  PubMed  Google Scholar 

  75. Munoz C, Neji R, Cruz G, Mallia A, Jeljeli S, Reader AJ, et al. Motion-corrected simultaneous cardiac positron emission tomography and coronary MR angiography with high acquisition efficiency. Magn Reson Med. 2017; https://doi.org/10.1002/mrm.26690.

  76. Metz S, Ganter C, Lorenzen S, van Marwick S, Holzapfel K, Herrmann K, et al. Multiparametric MR and PET imaging of intratumoral biological heterogeneity in patients with metastatic lung cancer using voxel-by-voxel analysis. PLoS One. 2015;10(7):e0132386. https://doi.org/10.1371/journal.pone.0132386.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Martinez-Moller A, Eiber M, Nekolla SG, Souvatzoglou M, Drzezga A, Ziegler S, et al. Workflow and scan protocol considerations for integrated whole-body PET/MRI in oncology. J Nucl Med. 2012;53(9):1415–26. https://doi.org/10.2967/jnumed.112.109348.

    Article  PubMed  Google Scholar 

  78. DePuey EG. Traditional gamma cameras are preferred. J Nucl Cardiol. 2016;23(4):795–802. https://doi.org/10.1007/s12350-016-0460-0.

    Article  PubMed  Google Scholar 

  79. Lima R, Peclat T, Soares T, Ferreira C, Souza AC, Camargo G. Comparison of the prognostic value of myocardial perfusion imaging using a CZT-SPECT camera with a conventional anger camera. J Nucl Cardiol. 2017;24(1):245–51. https://doi.org/10.1007/s12350-016-0618-9.

    Article  PubMed  Google Scholar 

  80. Allie R, Hutton BF, Prvulovich E, Bomanji J, Michopoulou S, Ben-Haim S. Pitfalls and artifacts using the D-SPECT dedicated cardiac camera. J Nucl Cardiol. 2016;23(2):301–10. https://doi.org/10.1007/s12350-015-0277-2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Nekolla.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Metabolic Syndrome and Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekolla, S.G., van Marwick, S., Schachoff, S. et al. Cardiovascular PET/MRI: Technical Considerations and Outlook. Curr Cardiovasc Imaging Rep 10, 36 (2017). https://doi.org/10.1007/s12410-017-9435-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-017-9435-z

Keywords

Navigation