Skip to main content

Advertisement

Log in

Molecular Imaging of Stem Cells and Exosomes for Myocardial Regeneration

  • Molecular Imaging (J Wu and P Nguyen, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Stem cell therapy is studied for the treatment of ischemic heart disease. Despite high expectations, investigation has yielded mixed results. For further advancement of this field, it is essential to understand the fate of the transplanted stem cells in living subjects. A myriad of tools has been developed to allow for the immediate and longitudinal monitoring of stem cells in vivo. In this review, we outline the most reliable techniques and their implications for cardiac regenerative medicine.

Recent Findings

Direct (e.g., PET/SPECT, MRI) and indirect labeling (e.g., reporter gene) techniques have existed for decades prior to their use in stem cell imaging. In this review, we describe some of the key developments in the context of stem cell therapy for cardiac ischemia, including new contrast agents (MRI, SPECT) and novel reporter genes (e.g., near-infrared fluorescent protein). Furthermore, we discuss innovative techniques that integrate direct and indirect labeling, such as PET reporter gene systems. Finally, we examine the potential of exosomes, a component of the stem cell secretome, which has recently garnered much attention for its potential in myocardial regeneration, and how they may be imaged in vivo.

Summary

This review outlines the most reliable techniques for stem cell imaging in cardiac injury animal models, new and notable advancements in the field, and possible directions for cardiac regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yip S, Shah K. Stem-cell based therapies for brain tumors. Curr Opin Mol Ther. 2008;10:334–42.

    PubMed  Google Scholar 

  2. Oh H. Cell therapy trials in congenital heart disease. Circ Res. 2017;120:1353–66.

    Article  CAS  PubMed  Google Scholar 

  3. Kennedy-Lydon T, Rosenthal N. Cardiac regeneration: all work and no repair? Sci Transl Med. 2017;9.

  4. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35.

    Article  CAS  PubMed  Google Scholar 

  5. van Berlo JH, Molkentin JD. An emerging consensus on cardiac regeneration. Nat Med. 2014;20:1386–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cheng K, Shen D, Hensley MT, Middleton R, Sun B, Liu W, et al. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nat Commun. 2014;5:4880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol Imaging. 2015;10:329–55.

    Article  CAS  PubMed  Google Scholar 

  8. Sosnovik DE. Molecular imaging in cardiovascular magnetic resonance imaging: current perspective and future potential. Top Magn Reson Imaging. 2008;19:59–68.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yamada M, Gurney PT, Chung J, Kundu P, Drukker M, Smith AK, et al. Manganese-guided cellular MRI of human embryonic stem cell and human bone marrow stromal cell viability. Magn Reson Med. 2009;62:1047–54.

    Article  CAS  PubMed  Google Scholar 

  10. Dash R, Chung J, Ikeno F, Hahn-Windgassen A, Matsuura Y, Bennett MV, et al. Dual manganese-enhanced and delayed gadolinium-enhanced MRI detects myocardial border zone injury in a pig ischemia-reperfusion model. Circ Cardiovasc Imaging. 2011;4:574–82.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chung J, Dash R, Kee K, Barral JK, Kosuge H, Robbins RC, et al. Theranostic effect of serial manganese-enhanced magnetic resonance imaging of human embryonic stem cell derived teratoma. Magn Reson Med. 2012;68:595–9.

    Article  CAS  PubMed  Google Scholar 

  12. Toma I, Kim PJ, Dash R, McConnell MV, Nishimura D, Harnish P, et al. Telmisartan in the diabetic murine model of acute myocardial infarction: dual contrast manganese-enhanced and delayed enhancement mri evaluation of the peri-infarct region. Cardiovasc Diabetol. 2016;15:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med. 2005;53:999–1005.

    Article  CAS  PubMed  Google Scholar 

  14. Uchida M, Terashima M, Cunningham CH, Suzuki Y, Willits DA, Willis AF, et al. A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magn Reson Med. 2008;60:1073–81.

    Article  CAS  PubMed  Google Scholar 

  15. Balchandani P, Yamada M, Pauly J, Yang P, Spielman D. Self-refocused spatial-spectral pulse for positive contrast imaging of cells labeled with spio nanoparticles. Magn Reson Med. 2009;62:183–92.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li Z, Lee A, Huang M, Chun H, Chung J, Chu P, et al. Imaging survival and function of transplanted cardiac resident stem cells. J Am Coll Cardiol. 2009;53:1229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chapon C, Franconi F, Lemaire L, Marescaux L, Legras P, Saint-Andre JP, et al. High field magnetic resonance imaging evaluation of superparamagnetic iron oxide nanoparticles in a permanent rat myocardial infarction. Investig Radiol. 2003;38:141–6.

    CAS  Google Scholar 

  18. Qi CM, Du L, Wu WH, Li DY, Hao J, Gong L, et al. Detection of vulnerable atherosclerotic plaques in experimental atherosclerosis with the USPIO-enhanced MRI. Cell Biochem Biophys. 2015;73:331–7.

    Article  CAS  PubMed  Google Scholar 

  19. Yilmaz A, Dengler MA, van der Kuip H, Yildiz H, Rosch S, Klumpp S, et al. Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur Heart J. 2013;34:462–75.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou B, Li D, Qian J, Li Z, Pang P, Shan H. MR tracking of SPIO-labeled mesenchymal stem cells in rats with liver fibrosis could not monitor the cells accurately. Contrast Media Mol Imaging. 2015;10:473–80.

    Article  CAS  PubMed  Google Scholar 

  21. Arai T, Kofidis T, Bulte JW, de Bruin J, Venook RD, Berry GJ, et al. Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t. Magn Reson Med. 2006;55:203–9.

    Article  PubMed  Google Scholar 

  22. Suzuki Y, Zhang S, Kundu P, Yeung AC, Robbins RC, Yang PC. In vitro comparison of the biological effects of three transfection methods for magnetically labeling mouse embryonic stem cells with ferumoxides. Magn Reson Med. 2007;57:1173–9.

    Article  CAS  PubMed  Google Scholar 

  23. Wei MQ, Wen DD, Wang XY, Huan Y, Yang Y, Xu J, et al. Experimental study of endothelial progenitor cells labeled with superparamagnetic iron oxide in vitro. Mol Med Rep. 2015;11:3814–9.

    Article  CAS  PubMed  Google Scholar 

  24. Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation. 2003;107:2290–3.

    Article  PubMed  Google Scholar 

  25. Jendelova P, Herynek V, Urdzikova L, Glogarova K, Kroupova J, Andersson B, et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res. 2004;76:232–43.

    Article  CAS  PubMed  Google Scholar 

  26. Hua P, Wang YY, Liu LB, Liu JL, Liu JY, Yang YQ, et al. In vivo magnetic resonance imaging tracking of transplanted superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells in rats with myocardial infarction. Mol Med Rep. 2015;11:113–20.

    Article  CAS  PubMed  Google Scholar 

  27. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev. 2012;112:2323–38.

    Article  CAS  PubMed  Google Scholar 

  28. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology. 2003;229:838–46.

    Article  PubMed  Google Scholar 

  29. Li Z, Suzuki Y, Huang M, Cao F, Xie X, Connolly AJ, et al. Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells. 2008;26:864–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu J, Wang L, Cao J, Huang Y, Lin Y, Wu X, et al. Functional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles. Nano. 2014;6:9025–33.

    CAS  Google Scholar 

  31. Chung J, Kee K, Barral JK, Dash R, Kosuge H, Wang X, et al. In vivo molecular MRI of cell survival and teratoma formation following embryonic stem cell transplantation into the injured murine myocardium. Magn Reson Med. 2011;66:1374–81.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suzuki Y, Cunningham CH, Noguchi K, Chen IY, Weissman IL, Yeung AC, et al. In vivo serial evaluation of superparamagnetic iron-oxide labeled stem cells by off-resonance positive contrast. Magn Reson Med. 2008;60:1269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen IY, Greve JM, Gheysens O, Willmann JK, Rodriguez-Porcel M, Chu P, et al. Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide mr contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation. Mol Imaging Biol. 2009;11:178–87.

    Article  PubMed  Google Scholar 

  34. Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun. 2007;354:700–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Terrovitis J, Stuber M, Youssef A, Preece S, Leppo M, Kizana E, et al. Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation. 2008;117:1555–62.

    Article  PubMed  Google Scholar 

  36. Kim PJ, Mahmoudi M, Ge X, Matsuura Y, Toma I, Metzler S, et al. Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circ Res. 2015;116:e40–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Naumova AV, Yarnykh VL, Balu N, Reinecke H, Murry CE, Yuan C. Quantification of MRI signal of transgenic grafts overexpressing ferritin in murine myocardial infarcts. NMR Biomed. 2012;25:1187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang Z, Li C, Yang S, Xu J, Shen Y, Xie X, et al. Magnetic resonance hypointensive signal primarily originates from extracellular iron particles in the long-term tracking of mesenchymal stem cells transplanted in the infarcted myocardium. Int J Nanomedicine. 2015;10:1679–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hendry SL 2nd, van der Bogt KE, Sheikh AY, Arai T, Dylla SJ, Drukker M, et al. Multimodal evaluation of in vivo magnetic resonance imaging of myocardial restoration by mouse embryonic stem cells. J Thorac Cardiovasc Surg. 2008;136:1028–1037 e1021.

    Article  PubMed  Google Scholar 

  40. Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X, et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation. 2006;113:1005–14.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Parashurama N, Ahn BC, Ziv K, Ito K, Paulmurugan R, Willmann JK, et al. Multimodality molecular imaging of cardiac cell transplantation: part i. Reporter gene design, characterization, and optical in vivo imaging of bone marrow stromal cells after myocardial infarction. Radiology. 2016;280:815–25.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hung TC, Suzuki Y, Urashima T, Caffarelli A, Hoyt G, Sheikh AY, et al. Multimodality evaluation of the viability of stem cells delivered into different zones of myocardial infarction. Circ Cardiovasc Imaging. 2008;1:6–13.

    Article  PubMed  Google Scholar 

  43. Mahmoudi M, Tachibana A, Goldstone AB, Woo YJ, Chakraborty P, Lee KR, et al. Novel MRI contrast agent from magnetotactic bacteria enables in vivo tracking of iPSC-derived cardiomyocytes. Sci Rep. 2016;6:26960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anderson LJ, Westwood MA, Holden S, Davis B, Prescott E, Wonke B, et al. Myocardial iron clearance during reversal of siderotic cardiomyopathy with intravenous desferrioxamine: a prospective study using T2* cardiovascular magnetic resonance. Br J Haematol. 2004;127:348–55.

    Article  CAS  PubMed  Google Scholar 

  45. Naqvi S, Samim M, Abdin M, Ahmed FJ, Maitra A, Prashant C, et al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine. 2010;5:983–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Voogd A, Sluiter W, van Eijk HG, Koster JF. Low molecular weight iron and the oxygen paradox in isolated rat hearts. J Clin Invest. 1992;90:2050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. von der Haar K, Lavrentieva A, Stahl F, Scheper T, Blume C. Lost signature: progress and failures in in vivo tracking of implanted stem cells. Appl Microbiol Biotechnol. 2015;99:9907–22.

    Article  PubMed  CAS  Google Scholar 

  48. Trinkaus ME, Blum R, Rischin D, Callahan J, Bressel M, Segard T, et al. Imaging of hypoxia with 18f-faza pet in patients with locally advanced non-small cell lung cancer treated with definitive chemoradiotherapy. J Med Imaging Radiat Oncol. 2013;57:475–81.

    Article  PubMed  Google Scholar 

  49. Herschman HR, MacLaren DC, Iyer M, Namavari M, Bobinski K, Green LA, et al. Seeing is believing: non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography. J Neurosci Res. 2000;59:699–705.

    Article  CAS  PubMed  Google Scholar 

  50. Pagano D, Townend JN, Parums DV, Bonser RS, Camici PG. Hibernating myocardium: morphological correlates of inotropic stimulation and glucose uptake. Heart. 2000;83:456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Knuesel PR, Nanz D, Wyss C, Buechi M, Kaufmann PA, von Schulthess GK, et al. Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation. 2003;108:1095–100.

    Article  PubMed  Google Scholar 

  52. Cai M, Ren L, Yin X, Guo Z, Li Y, He T, et al. Pet monitoring angiogenesis of infarcted myocardium after treatment with vascular endothelial growth factor and bone marrow mesenchymal stem cells. Amino Acids. 2016;48:811–20.

    Article  CAS  PubMed  Google Scholar 

  53. Khalil MM, Tremoleda JL, Bayomy TB, Gsell W. Molecular SPECT imaging: an overview. Int J Mol Imaging. 2011;2011:796025.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moses WW. Fundamental limits of spatial resolution in pet. Nucl Instrum Methods Phys Res A. 2011;648(Supplement 1):S236–40.

    Article  CAS  PubMed  Google Scholar 

  55. Jones T, Townsend D. History and future technical innovation in positron emission tomography. J Med Imaging (Bellingham). 2017;4:011013.

    Article  Google Scholar 

  56. Pichler BJ, Judenhofer MS, Pfannenberg C. Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Pharmacol. 2008;185:109–32.

    Article  CAS  Google Scholar 

  57. Hutton BF, Occhipinti M, Kuehne A, Mathe D, Kovacs N, Waiczies H, Erlandsson K, Salvado D, Carminati M, Montagnani GL, Short SC, Ottobrini L, van Mullekom P, Piemonte C, Bukki T, Nyitrai Z, Papp Z, Nagy K, Niendorf T, Francesco I, Fiorini C, Consortium I. Development of clinical simultaneous SPECT/MRI. Br J Radiol. 2017;20160690.

  58. Collantes M, Pelacho B, Garcia-Velloso MJ, Gavira JJ, Abizanda G, Palacios I, et al. Non-invasive in vivo imaging of cardiac stem/progenitor cell biodistribution and retention after intracoronary and intramyocardial delivery in a swine model of chronic ischemia reperfusion injury. J Transl Med. 2017;15:56.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kim MH, Woo SK, Kim KI, Lee TS, Kim CW, Kang JH, et al. Simple methods for tracking stem cells with (64)cu-labeled dota-hexadecyl-benzoate. ACS Med Chem Lett. 2015;6:528–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berger A. How does it work? Positron emission tomography. BMJ. 2003;326:1449.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Doyle B, Kemp BJ, Chareonthaitawee P, Reed C, Schmeckpeper J, Sorajja P, et al. Dynamic tracking during intracoronary injection of 18f-fdg-labeled progenitor cell therapy for acute myocardial infarction. J Nucl Med. 2007;48:1708–14.

    Article  PubMed  Google Scholar 

  62. Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET, et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation. 2005;112:I150–6.

    PubMed  Google Scholar 

  63. Parashurama N, Ahn BC, Ziv K, Ito K, Paulmurugan R, Willmann JK, et al. Multimodality molecular imaging of cardiac cell transplantation: part ii. In vivo imaging of bone marrow stromal cells in swine with PET/CT and MR imaging. Radiology. 2016;280:826–36.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kang WJ, Kang HJ, Kim HS, Chung JK, Lee MC, Lee DS. Tissue distribution of 18f-fdg-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med. 2006;47:1295–301.

    PubMed  Google Scholar 

  65. Rodriguez-Porcel M, Kronenberg MW, Henry TD, Traverse JH, Pepine CJ, Ellis SG, et al. Cell tracking and the development of cell-based therapies: a view from the cardiovascular cell therapy research network. JACC Cardiovasc Imaging. 2012;5:559–65.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim MH, Woo SK, Lee KC, An GI, Pandya D, Park NW, et al. Longitudinal monitoring adipose-derived stem cell survival by pet imaging hexadecyl-4-(1)(2)(4)i-iodobenzoate in rat myocardial infarction model. Biochem Biophys Res Commun. 2015;456:13–9.

    Article  CAS  PubMed  Google Scholar 

  67. Gildehaus FJ, Haasters F, Drosse I, Wagner E, Zach C, Mutschler W, et al. Impact of indium-111 oxine labelling on viability of human mesenchymal stem cells in vitro, and 3d cell-tracking using SPECT/CT in vivo. Mol Imaging Biol. 2011;13:1204–14.

    Article  PubMed  Google Scholar 

  68. Elhami E, Goertzen AL, Xiang B, Deng J, Stillwell C, Mzengeza S, et al. Viability and proliferation potential of adipose-derived stem cells following labeling with a positron-emitting radiotracer. Eur J Nucl Med Mol Imaging. 2011;38:1323–34.

    Article  CAS  PubMed  Google Scholar 

  69. Wolfs E, Struys T, Notelaers T, Roberts SJ, Sohni A, Bormans G, et al. 18f-fdg labeling of mesenchymal stem cells and multipotent adult progenitor cells for pet imaging: effects on ultrastructure and differentiation capacity. J Nucl Med. 2013;54:447–54.

    Article  CAS  PubMed  Google Scholar 

  70. Verma VK, Beevi SS, Tabassum A, Kumaresan K, Kamaraju RS, Arbab AS, et al. In vitro assessment of cytotoxicity and labeling efficiency of 99mtc-hmpao with stromal vascular fraction of adipose tissue. Nucl Med Biol. 2014;41:744–8.

    Article  CAS  PubMed  Google Scholar 

  71. Faivre L, Chaussard M, Vercellino L, Vanneaux V, Hosten B, Teixera K, et al. 18f-fdg labelling of hematopoietic stem cells: dynamic study of bone marrow homing by PET-CT imaging and impact on cell functionality. Curr Res Transl Med. 2016;64:141–8.

    Article  CAS  PubMed  Google Scholar 

  72. Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol. 1962;59:223–39.

    Article  CAS  PubMed  Google Scholar 

  73. Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D. Green fluorescent protein as a marker for gene expression. Science. 1994;263:802–5.

    Article  CAS  PubMed  Google Scholar 

  74. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, et al. A monomeric red fluorescent protein. Proc Natl Acad Sci. 2002;99:7877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fradkov AF, Verkhusha VV, Staroverov DB, Bulina ME, Yanushevich YG, Martynov VI, et al. Far-red fluorescent tag for protein labelling. Biochem J. 2002;368:17–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gurskaya NG, Savitsky AP, Yanushevich YG, Lukyanov SA, Lukyanov KA. Color transitions in coral’s fluorescent proteins by site-directed mutagenesis. BMC Biochem. 2001;2:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, et al. Fluorescent proteins from nonbioluminescent anthozoa species. Nat Biotechnol. 1999;17:969–73.

    Article  CAS  PubMed  Google Scholar 

  78. Miyawaki A. Green fluorescent protein-like proteins in reef Anthozoa animals. Cell Struct Funct. 2002;27:343–7.

    Article  CAS  PubMed  Google Scholar 

  79. Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods. 2005;2:905–9.

    Article  CAS  PubMed  Google Scholar 

  80. Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, et al. A genetically encoded, fluorescent indicator for cyclic amp in living cells. Nat Cell Biol. 2000;2:25–9.

    Article  CAS  PubMed  Google Scholar 

  81. Zacharias DA, Tsien RY. Molecular biology and mutation of green fluorescent protein. Green Fluorescent Protein. 2005:83–120.

  82. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004;22:1567–72.

    Article  CAS  PubMed  Google Scholar 

  83. Contag CH. In vivo pathology: seeing with molecular specificity and cellular resolution in the living body. Annu Rev Pathol Mech Dis. 2007;2:277–305.

    Article  CAS  Google Scholar 

  84. Massoud TF. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17:545–80.

    Article  CAS  PubMed  Google Scholar 

  85. Nighswander-Rempel SP, Kupriyanov VV, Shaw RA. Relative contributions of hemoglobin and myoglobin to near-infrared spectroscopic images of cardiac tissue. Appl Spectrosc. 2005;59:190–3.

    Article  CAS  PubMed  Google Scholar 

  86. Patterson GH. A new harvest of fluorescent proteins. Nat Biotechnol. 2004;22:1524–5.

    Article  CAS  PubMed  Google Scholar 

  87. Shah K, Jacobs A, Breakefield XO, Weissleder R. Molecular imaging of gene therapy for cancer. Gene Ther. 2004;11:1175–87.

    Article  CAS  PubMed  Google Scholar 

  88. Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, et al. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia. 2000;2:26–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bouvet M, Nardin S, Yang M, Wang X, Giang P, Moossa AR, et al. A real-time fluorescent model of human pancreatic cancer growth, progression, and metastases in the nude mouse. Gastroenterology. 2000;118:A1041.

    Article  Google Scholar 

  90. Yang M, Baranov E, Wang J-W, Jiang P, Wang X, Sun F-X, et al. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci. 2002;99:3824–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu T, Close D, Handagama W, Marr E, Sayler G, Ripp S. The expanding toolbox of in vivo bioluminescent imaging. Front Oncol. 2016;6:150.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Close DM, Xu T, Sayler GS, Ripp S. In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors (Basel). 2011;11:180–206.

    Article  CAS  Google Scholar 

  93. Sato A, Klaunberg B, Tolwani R. In vivo bioluminescence imaging. Comp Med. 2004;54:631–4.

    CAS  PubMed  Google Scholar 

  94. Chen H, Xia R, Li Z, Zhang L, Xia C, Ai H, et al. Mesenchymal stem cells combined with hepatocyte growth factor therapy for attenuating ischaemic myocardial fibrosis: assessment using multimodal molecular imaging. Sci Rep. 2016;6:33700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dash R, Kim PJ, Matsuura Y, Ikeno F, Metzler S, Huang NF, Lyons JK, Nguyen PK, Ge X, Foo CW, McConnell MV, Wu JC, Yeung AC, Harnish P, Yang PC. Manganese-enhanced magnetic resonance imaging enables in vivo confirmation of peri-infarct restoration following stem cell therapy in a porcine ischemia-reperfusion model. J Am Heart Assoc 2015;4.

  96. Ge X, Wang IN, Toma I, Sebastiano V, Liu J, Butte MJ, et al. Human amniotic mesenchymal stem cell-derived induced pluripotent stem cells may generate a universal source of cardiac cells. Stem Cells Dev. 2012;21:2798–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rodriguez-Porcel M, Gheysens O, Chen IY, Wu JC, Gambhir SS. Image-guided cardiac cell delivery using high-resolution small-animal ultrasound. Mol Ther. 2005;12:1142–7.

    Article  CAS  PubMed  Google Scholar 

  98. Shu X, Royant A, Lin MZ, Aguilera TA, Lev-Ram V, Steinbach PA, et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science. 2009;324:804–7.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lin MZ, McKeown MR, Ng H-L, Aguilera TA, Shaner NC, Campbell RE, et al. Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol. 2009;16:1169–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shcherbo D, Shemiakina II, Ryabova AV, Luker KE, Schmidt BT, Souslova EA, et al. Near-infrared fluorescent proteins. Nat Methods. 2010;7:827–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Filonov GS, Piatkevich KD, Ting L-M, Zhang J, Kim K, Verkhusha VV. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol. 2011;29:757–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tran MTN, Tanaka J, Hamada M, Sugiyama Y, Sakaguchi S, Nakamura M, et al. In vivo image analysis using iRFP transgenic mice. Exp Anim. 2014;63:311–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang Y, Zhou M, Wang X, Qin G, Weintraub NL, Tang Y. Assessing in vitro stem-cell function and tracking engraftment of stem cells in ischaemic hearts by using novel iRFP gene labelling. J Cell Mol Med. 2014;18:1889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Moudgil R, Dick AJ. Regenerative cell imaging in cardiac repair. Can J Cardiol. 2014;30:1323–34.

    Article  PubMed  Google Scholar 

  105. Wu JC, Inubushi M, Sundaresan G, Schelbert HR, Gambhir SS. Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation. 2002;106:180–3.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bengel FM, Anton M, Avril N, Brill T, Nguyen N, Haubner R, et al. Uptake of radiolabeled 2′-fluoro-2′-deoxy-5-iodo-1-beta-d-arabinofuranosyluracil in cardiac cells after adenoviral transfer of the herpesvirus thymidine kinase gene: the cellular basis for cardiac gene imaging. Circulation. 2000;102:948–50.

    Article  CAS  PubMed  Google Scholar 

  107. Yang JJ, Liu ZQ, Zhang JM, Wang HB, Hu SY, Liu JF, et al. Real-time tracking of adipose tissue-derived stem cells with injectable scaffolds in the infarcted heart. Heart Vessel. 2013;28:385–96.

    Article  Google Scholar 

  108. Wang Y, Huang W, Liang J, Wen Z, Chang D, Kang K, et al. Suicide gene-mediated sequencing ablation revealed the potential therapeutic mechanism of induced pluripotent stem cell-derived cardiovascular cell patch post-myocardial infarction. Antioxid Redox Signal. 2014;21:2177–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cho IK, Wang S, Mao H, Chan AW. Genetic engineered molecular imaging probes for applications in cell therapy: emphasis on MRI approach. Am J Nucl Med Mol Imaging. 2016;6:234–61.

    PubMed  PubMed Central  Google Scholar 

  110. Pereira SM, Herrmann A, Moss D, Poptani H, Williams SR, Murray P, et al. Evaluating the effectiveness of transferrin receptor-1 (tfr1) as a magnetic resonance reporter gene. Contrast Media Mol Imaging. 2016;11:236–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vandsburger M. Cardiac cell tracking with mri reporter genes: welcoming a new field. Curr Cardiovasc Imaging Rep. 2014;7:9250.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Deans AE, Wadghiri YZ, Bernas LM, Yu X, Rutt BK, Turnbull DH. Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn Reson Med. 2006;56:51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Campan M, Lionetti V, Aquaro GD, Forini F, Matteucci M, Vannucci L, et al. Ferritin as a reporter gene for in vivo tracking of stem cells by 1.5-t cardiac MRI in a rat model of myocardial infarction. Am J Physiol Heart Circ Physiol. 2011;300:H2238–50.

    Article  CAS  PubMed  Google Scholar 

  114. Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET. A new transgene reporter for in vivo magnetic resonance imaging. Nat Med. 2005;11:450–4.

    Article  CAS  PubMed  Google Scholar 

  115. Bengtsson NE, Brown G, Scott EW, Walter GA. Lacz as a genetic reporter for real-time MRI. Magn Reson Med. 2010;63:745–53.

    Article  PubMed  Google Scholar 

  116. Vandsburger MH, Radoul M, Cohen B, Neeman M. MRI reporter genes: applications for imaging of cell survival, proliferation, migration and differentiation. NMR Biomed. 2013;26:872–84.

    Article  CAS  PubMed  Google Scholar 

  117. Pereira SM, Williams SR, Murray P, Taylor A. Ms-1 maga: revisiting its efficacy as a reporter gene for MRI. Mol Imaging. 2016;15.

  118. Qiao H, Surti S, Choi SR, Raju K, Zhang H, Ponde DE, et al. Death and proliferation time course of stem cells transplanted in the myocardium. Mol Imaging Biol. 2009;11:408–14.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Deroose CM, De A, Loening AM, Chow PL, Ray P, Chatziioannou AF, et al. Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal pet, small-animal CT, and bioluminescence imaging. J Nucl Med. 2007;48:295–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang G, Lan X, Yen TC, Chen Q, Pei Z, Qin C, et al. Therapeutic gene expression in transduced mesenchymal stem cells can be monitored using a reporter gene. Nucl Med Biol. 2012;39:1243–50.

    Article  CAS  PubMed  Google Scholar 

  121. Lehner S, Lang C, Kaissis G, Todica A, Zacherl MJ, Boening G, et al. (124)I-pet assessment of human sodium iodide symporter reporter gene activity for highly sensitive in vivo monitoring of teratoma formation in mice. Mol Imaging Biol. 2015;17:874–83.

    Article  CAS  PubMed  Google Scholar 

  122. Cao F, Drukker M, Lin S, Sheikh AY, Xie X, Li Z, et al. Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells. 2007;9:107–17.

    Article  CAS  PubMed  Google Scholar 

  123. Edinger M, Cao YA, Verneris MR, Bachmann MH, Contag CH, Negrin RS. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood. 2003;101:640–8.

    Article  CAS  PubMed  Google Scholar 

  124. Kesarwala AH, Prior JL, Sun J, Harpstrite SE, Sharma V, Piwnica-Worms D. Second-generation triple reporter for bioluminescence, micro-positron emission tomography, and fluorescence imaging. Mol Imaging. 2006;5:465–74.

    PubMed  Google Scholar 

  125. Ponomarev V, Doubrovin M, Serganova I, Vider J, Shavrin A, Beresten T, et al. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging. 2004;31:740–51.

    Article  CAS  PubMed  Google Scholar 

  126. Ray P, Tsien R, Gambhir SS. Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res. 2007;67:3085–93.

    Article  CAS  PubMed  Google Scholar 

  127. Day RN, Kawecki M, Berry D. Dual-function reporter protein for analysis of gene expression in living cells. BioTechniques. 1998;25:848-850, 852–44, 856.

    Google Scholar 

  128. Ray P, De A, Min JJ, Tsien RY, Gambhir SS. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res. 2004;64:1323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li L, Chen X, Wang WE, Zeng C. How to improve the survival of transplanted mesenchymal stem cell in ischemic heart? Stem Cells Int. 2016;2016:9682757.

    PubMed  Google Scholar 

  130. Ji ST, Kim H, Yun J, Chung JS, Kwon SM. Promising therapeutic strategies for mesenchymal stem cell-based cardiovascular regeneration: from cell priming to tissue engineering. Stem Cells Int. 2017;2017:3945403.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Montanari S, Dayan V, Yannarelli G, Billia F, Viswanathan S, Connelly KA, et al. Mesenchymal stromal cells improve cardiac function and left ventricular remodeling in a heart transplantation model. J Heart Lung Transplant. 2015;34:1481–8.

    Article  PubMed  Google Scholar 

  132. Fukushima S, Varela-Carver A, Coppen SR, Yamahara K, Felkin LE, Lee J, et al. Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation. 2007;115:2254–61.

    Article  PubMed  Google Scholar 

  133. Aminzadeh MA, Tseliou E, Sun B, Cheng K, Malliaras K, Makkar RR, et al. Therapeutic efficacy of cardiosphere-derived cells in a transgenic mouse model of non-ischaemic dilated cardiomyopathy. Eur Heart J. 2015;36:751–62.

    Article  PubMed  Google Scholar 

  134. Hodgson DM, Behfar A, Zingman LV, Kane GC, Perez-Terzic C, Alekseev AE, et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol. 2004;287:H471–9.

    Article  CAS  PubMed  Google Scholar 

  135. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015–24.

    Article  CAS  PubMed  Google Scholar 

  136. Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation. 2009;120:408–16.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Templin C, Zweigerdt R, Schwanke K, Olmer R, Ghadri JR, Emmert MY, et al. Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression. Circulation. 2012;126:430–9.

    Article  CAS  PubMed  Google Scholar 

  138. Buccini S, Haider KH, Ahmed RP, Jiang S, Ashraf M. Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res Cardiol. 2012;107:301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature. 2008;453:322–9.

    Article  CAS  PubMed  Google Scholar 

  140. Al-Zoughbi W, Huang J, Paramasivan GS, Till H, Pichler M, Guertl-Lackner B, et al. Tumor macroenvironment and metabolism. Semin Oncol. 2014;41:281–95.

    Article  PubMed  CAS  Google Scholar 

  141. Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL, et al. Tumor exosomes expressing fas ligand mediate cd8+ t-cell apoptosis. Blood Cells Mol Dis. 2005;35:169–73.

    Article  CAS  PubMed  Google Scholar 

  142. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, et al. Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 2009;124:2621–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Martins VR, Dias MS, Hainaut P. Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Curr Opin Oncol. 2013;25:66–75.

    Article  CAS  PubMed  Google Scholar 

  144. Pocsfalvi G, Stanly C, Vilasi A, Fiume I, Capasso G, Turiak L, et al. Mass spectrometry of extracellular vesicles. Mass Spectrom Rev. 2016;35:3–21.

    Article  CAS  PubMed  Google Scholar 

  145. Dijkstra S, Birker IL, Smit FP, Leyten GH, de Reijke TM, van Oort IM, et al. Prostate cancer biomarker profiles in urinary sediments and exosomes. J Urol. 2014;191:1132–8.

    Article  CAS  PubMed  Google Scholar 

  146. Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem. 2013;288:26888–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dear JW, Street JM, Bailey MA. Urinary exosomes: a reservoir for biomarker discovery and potential mediators of intrarenal signalling. Proteomics. 2013;13:1572–80.

    Article  CAS  PubMed  Google Scholar 

  148. Aliotta JM. Tumor exosomes: a novel biomarker? J Gastrointest Oncol. 2011;2:203–5.

    PubMed  PubMed Central  Google Scholar 

  149. Ren J, He W, Zheng L, Duan H. From structures to functions: insights into exosomes as promising drug delivery vehicles. Biomater Sci. 2016;4:910–21.

    Article  CAS  PubMed  Google Scholar 

  150. Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release. 2015;219:396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 1846;2014:75–87.

    Google Scholar 

  152. Sarko DK, McKinney CE. Exosomes: origins and therapeutic potential for neurodegenerative disease. Front Neurosci. 2017;11:82.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Yang Y, Ye Y, Su X, He J, Bai W, He X. MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front Cell Neurosci. 2017;11:55.

    PubMed  PubMed Central  Google Scholar 

  154. Kang K, Ma R, Cai W, Huang W, Paul C, Liang J, et al. Exosomes secreted from cxcr4 overexpressing mesenchymal stem cells promote cardioprotection via akt signaling pathway following myocardial infarction. Stem Cells Int. 2015;2015:659890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Sahoo S, Losordo DW. Exosomes and cardiac repair after myocardial infarction. Circ Res. 2014;114:333–44.

    Article  CAS  PubMed  Google Scholar 

  156. Nozaki T, Sugiyama S, Koga H, Sugamura K, Ohba K, Matsuzawa Y, et al. Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J Am Coll Cardiol. 2009;54:601–8.

    Article  PubMed  Google Scholar 

  157. Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res. 2015;117:52–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hu GW, Li Q, Niu X, Hu B, Liu J, Zhou SM, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Res Ther. 2015;6:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Hulsmans M, Holvoet P. Microrna-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc Res. 2013;100:7–18.

    Article  CAS  PubMed  Google Scholar 

  160. Jung JH, Fu X, Yang PC. Exosomes generated from iPSC-derivatives: new direction for stem cell therapy in human heart diseases. Circ Res. 2017;120:407–17.

    Article  CAS  PubMed  Google Scholar 

  161. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18:1606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hood JL, Pan H, Lanza GM, Wickline SA. Consortium for translational research in advanced I, nanomedicine. Paracrine induction of endothelium by tumor exosomes. Lab Investig. 2009;89:1317–28.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hu L, Wickline SA, Hood JL. Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn Reson Med. 2014.

  164. Busato A, Bonafede R, Bontempi P, Scambi I, Schiaffino L, Benati D, et al. Magnetic resonance imaging of ultrasmall superparamagnetic iron oxide-labeled exosomes from stem cells: a new method to obtain labeled exosomes. Int J Nanomedicine. 2016;11:2481–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T, et al. Visualization and in vivo tracking of the exosomes of murine melanoma b16-bl6 cells in mice after intravenous injection. J Biotechnol. 2013;165:77–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip C. Yang.

Ethics declarations

Conflict of Interest

Both authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animals subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santoso, M.R., Yang, P.C. Molecular Imaging of Stem Cells and Exosomes for Myocardial Regeneration. Curr Cardiovasc Imaging Rep 10, 37 (2017). https://doi.org/10.1007/s12410-017-9433-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-017-9433-1

Keywords

Navigation