Skip to main content
Log in

Mass Transfer in Osmotic Dehydration of Food Products: Comparison Between Mathematical Models

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Osmotic dehydration (OD) is a method to partially reduce water of fruits, vegetables, meat or fish aiming to increase the shelf life or as a pre-treatment in the processing of dehydrated foods. The aim of this work is to present the models most used in mathematical modelling of experimental data obtained from the OD processes, correlating the water loss and solid gain of the food product with process variables, and to perform a comparative and critical analyses of the different models and ability to fit data. The osmotic solution concentration, the temperature, the level of agitation and the geometry of the product are some of the operating parameters that will be mainly focused. Azuara’s, Peleg’s, Page’s, the Penetration, Magee’s, Weibull’s, Toupin et al.’s, Marcotte et al.’s, the Hydrodynamic mechanism, Spiazzi and Mascheroni’s, Seguí et al.’s, Crank’s, Hough et al.’s were the models approached. These were classified into empirical and semi-empirical, phenomenological and mechanistic, and the advantages and disadvantages were presented. An extensive list of applications of the different models to the osmotic dehydration, in variable ranges of operating conditions, of fruits, vegetables, meat and fish is provided in this work. Furthermore, equivalences between parameters of different models were established, based on the affinity of the functions used in the equations of the models, these equivalences allowing a better understanding of the adequacy of the different models to fit the same experimental data. A decision tree is provided in order to allow the selection of the most adequate model(s) to fit and predict experimental data from OD processes. All this information could assist and be helpful to researchers in the choice of the most adequate model(s) to fit experimental data, as well as to predict the water loss and solid gain of food products during OD processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

a :

Cylinder radius (m)

A i :

Area (m2)

A w :

Dehydration constant

B w :

Page’s parameter

A, x, y :

Magee’s parameters

A m :

Membrane surface area (m2)

a t :

Thermodynamic activity

a w :

Water activity

\(\hat{a}_{\text{wv}}\) :

Water activity of vacuole

\(\hat{a}_{\text{wi}}\) :

Water activity of the extracellular space

C 0 :

Initial solute concentration (kg m−3)

C :

Mass fraction

d :

Diameter (m)

D apj :

Apparent diffusion coefficient (m2 s−1)

D e :

Effective diffusivity (m2 s−1)

d PM :

Thickness of plasma membrane (m)

\(\bar{D}_{\text{s}}\) :

Apparent diffusivity of sucrose (m2 s−1)

Fo:

Fourier number, D e·t/l 2

J Pw :

Transmembrane molar water flux of the protoplast (kg mol m−2 s−1)

J jm :

Transmembrane molar flux of species j, water or solute (kg mol m−2 s−1)

J jp :

Symplastic molar flux of species j, water or solute (kg mol m−2 s−1)

k 1 :

Peleg’s parameter (s kg dry solids kg water−1)

k 2 :

Peleg’s parameter (kg dry solids kg water−1)

k w1 , k s1 :

Peleg’s parameter (s kg total weight kg water or dry solids−1)

k w2 , k s2 :

Peleg’s parameter (kg total weight kg water or dry solids−1)

k w, k s :

Mass transfer coefficient for WL or SG (kg water or dry solids kg total weight s−1/2)

k :

Rate parameter for WL or SG (mol kg−1 s−1/2)

kj p :

Plasmalemmatic transmembranary mass transfer coefficients (m s−1)

kj s :

Symplastic transmembrane mass transfer coefficients (m s−1)

l :

Semi-thickness of sample (m)

L kjm :

Macroscopic phenomenological coefficient of plasmalemma (kg mol2 J−1 m−2 s−1)

L kjp :

Macroscopic phenomenological coefficient of plasmodesmata (kg mol2 J−1 m−2 s−1)

L wm :

Phenomenological coefficient of water (kg mol2 Pa−1 s−1 m−5)

M 0 :

Initial moisture content (kg water kg dry solids−1)

M :

Moisture content (kg water kg dry solids−1)

M dm :

Mass of dry matter in the cellular volume (kg)

M w :

Molecular weight of water (kg kg mol−1)

nj cp :

Plasmalemmatic transmembranary mass flux (kg s−1 m−2)

\(nj_{\text{cs}}\) :

Symplastic transmembranary transfer (kg s−1 m−2)

nj 0 :

Extracellular mass flux (kg s−1 m−2)

N i1 :

Molar flux (kg mol m−2 s−1)

OD:

Osmotic dehydration

P :

Pressure (N m−2)

P 0c :

Cellular hydrostatic pressure (reference state at the temperature considered and at atmospheric pressure (N m−2)

P c :

Cellular hydrostatic pressure (N m−2)

r c :

Cylinder radius (m)

r :

Sphere radius (m)

R g :

Universal gas constant (J kg mol−1 K−1)

R i :

Radius of the extracellular space (m)

R wm :

Transmembrane transport of water (kg m−2 s−1)

SG:

Solid gain (kg dry solids kg total weight−1)

SG :

Solid gain at equilibrium (kg dry solids kg total weight−1)

s 1 , s 2 :

Azuara’s parameters (s−1)

T :

Temperature (°C, K)

t :

Time (s)

t v :

Thickness of the transfer pathway (m)

u :

Average velocity (m s−1)

u b :

Barycentric velocity (m s−1)

V :

Volume (m3)

V c :

Cellular volume (m3)

V 1 :

Intercellular volume (m3)

\(\bar{V}_{\text{w}}\) :

Partial molar volume of water (m3 kg mol water−1)

X :

Volumetric fraction of the total volume occupied by the liquid

X v :

Volumetric fraction of the pore occupied by the liquid

x w :

Water molar fraction

z L :

Length (m)

w 0 :

Initial weight of the sample (kg)

WL:

Water loss (kg water kg total weight−1)

WL :

Water loss at equilibrium (kg water kg total weight−1)

w s∞ :

Dry solids content of the sample at equilibrium (kg dry solids kg total weight−1)

w s :

Dry solids content of the sample after treatment (kg dry solids kg total weight−1)

w s0 :

Initial dry solids content of the sample (kg dry solids kg total weight−1)

w w∞ :

Water content of the sample at equilibrium (kg water kg total weight−1)

w w0 :

Initial water content of the sample (kg water kg total weight−1)

w w :

Water content of the sample after treatment (kg dry solids kg total weight−1)

α w , α s :

Weibull’s scale parameter (s)

α n :

Positive roots of the equation

β w , β s :

Weibull’s shape parameter

γ i :

Number from the comparison between Page’s and Crank’s models

ε e :

Effective porosity

μ :

Liquid viscosity (Pa s)

μ km :

Plasmalemma chemical potential (J kg mol−1)

μ kp :

Plasmodesmata chemical potential (J kg mol−1)

v :

Partial molar volume (m3 kg mol−1)

π :

Osmotic pressure

π* :

Osmotic pressure at equilibrium

π 0 :

Initial osmotic pressure

ρ :

Mass concentration (kg m−3)

ρ s :

Volume mass of sucrose (kg m−3)

ρj 0 :

Cellular mass concentrations (kg m−3)

ρj c :

Extracellular mass concentrations (kg m−3)

References

  1. Aguilera JM, Stanley DW, Baker KW (2000) New dimensions in microstructure of food products. Trends Food Sci Technol 11:3–9

    Article  CAS  Google Scholar 

  2. Alakali JS, Ariahu CC, Nkpa NN (2006) Kinetics of osmotic dehydration of mango. J Food Process Preserv 30:597–607

    Article  CAS  Google Scholar 

  3. An K, Hui L, Zhao D, Ding S, Tao H, Wang Z (2013) Effect of osmotic dehydration with pulsed vacuum on hot-air drying kinetics and quality attributes of cherry tomatoes. Dry Technol 31:698–706

    Article  CAS  Google Scholar 

  4. Andrade SAC, Neto BB, Nóbrega AC, Azoubel PM, Guerra NB (2007) Evaluation of water and sucrose diffusion coefficients during osmotic dehydration of jenipapo (Genipa americana L.). J Food Eng 78:551–555

    Article  Google Scholar 

  5. Azarpazhooh E, Ramaswamy HS (2010) Evaluation of diffusion and Azuara models for mass transfer kinetics during microwave-osmotic dehydration of apples under continuous flow medium-spray conditions. Dry Technol 28:57–67

    Article  CAS  Google Scholar 

  6. Azoubel PM, Murr FEX (2004) Mass transfer kinetics of osmotic dehydration of cherry tomato. J Food Eng 61:291–295

    Article  Google Scholar 

  7. Azuara E, Beristain CI (2002) Osmotic dehydration of apples by immersion in concentrated sucrose/maltodextrin solutions. J Food Process Preserv 26:295–306

    Article  CAS  Google Scholar 

  8. Azuara E, Beristain CI, Garcia HS (1992) Development of a mathematical model to predict kinetics of osmotic dehydration. J Food Sci Technol 29:239–242

    Google Scholar 

  9. Bahmani A, Jafari SM, Shahidi AS, Dehnad D (2015) Mass transfer kinetics of eggplant during osmotic dehydration by neural networks. J Food Process Preserv. doi:10.1111/jfpp.12435

    Google Scholar 

  10. Barat JM (1998) Desarrollo de un modelo de la deshidratación osmótica como operación básica. Tesis Doctoral. Universidad Politécnica de Valencia

  11. Beristain CI, Azuara E, Cortes R, Garcia HS (1990) Mass transfer during osmotic dehydration of pineapple rings. Int J Food Sci Technol 25:576–582

    Article  Google Scholar 

  12. Biswal RN, Bozorgmehr K (1992) Mass transfer in mixed solute osmotic dehydration of apple rings. Am Soc Agric Biol Eng 35:257–262

    Article  CAS  Google Scholar 

  13. Brochier B, Marczak LDF, Noreña CPZ (2015) Osmotic dehydration of yacon using glycerol and sorbitol as solutes: water effective diffusivity evaluation. Food Bioprocess Technol 8:623–636

    Article  CAS  Google Scholar 

  14. Chavan UD, Amarowicz R (2012) Osmotic dehydration process for preservation of fruits and vegetables. J Food Res 1:202–209

    Article  Google Scholar 

  15. Checmarev G, Casales MR, Yeannes MI, Bevilacqua AE (2013) Mass transfer modeling during osmotic dehydration of chub mackerel (Scomber japonicus) slices in salt and glycerol solution at different temperatures. J Food Process Preserv 38:1599–1607

    Article  Google Scholar 

  16. Checmarev G, Yeannes MI, Bevilacqua AE, Casales MR (2014) Mass transfer during osmotic dehydration of chub mackerel cylinders in ternary solution. J Food Res 3:49–58

    Article  Google Scholar 

  17. Conway J, Castaigne F, Picard G, Vovan X (1983) Mass transfer considerations in the osmotic dehydration of apples. Can Inst Food Sci Technol 16:25–29

    Article  Google Scholar 

  18. Corzo O, Bracho N (2006) Application of Peleg model to study mass transfer during osmotic dehydration of sardine sheets. J Food Eng 75:535–541

    Article  Google Scholar 

  19. Corzo O, Bracho N (2008) Application of Weibull distribution model to describe the vacuum pulse osmotic dehydration of sardine sheets. LWT Food Sci Technol 41:1108–1115

    Article  CAS  Google Scholar 

  20. Corzo O, Bracho N, Rodríguez J (2012) Comparison of Peleg and Azuara et al. models in the modeling mass transfer during pile salting of goat sheets. LWT Food Sci Technol 46:448–452

    Article  CAS  Google Scholar 

  21. Corzo O, Bracho N, Rodríguez J (2013) Application of Weibull distribution model in describing the pile salting of goat meat slices. Sci Res Essay 8:581–588

    Google Scholar 

  22. Corzo O, Bracho N, Rodríguez J (2015) Modeling mass transfer during salting of catfish sheets. J Aquat Food Prod Technol 24:120–130

    Article  Google Scholar 

  23. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  24. Crank J, Nicholson P (1947) A practical method for numerical evaluation of solution of partial differential equations of the heat-conduction type. Math Proc Camb 43:50–67

    Article  Google Scholar 

  25. Cunha LM, Oliveira FAR, Aboim AP, Frías JM, Pinheiro-Torres A (2001) Stochastic approach to the modelling of water losses during osmotic dehydration and improved parameter estimation. Int J Food Sci Technol 36:253–262

    Article  CAS  Google Scholar 

  26. Cunha LM, Oliveira FAR, Oliveira JC (1998) Optimal experimental design for estimating the kinetic parameters of process described by the Weibull probability distribution function. J Food Eng 37:175–191

    Article  Google Scholar 

  27. Da Silva WP, Silva CMDPS, Aires JEF, Junior AFS (2014) Osmotic dehydration and convective drying of coconut slices: experimental determination and description using one-dimensional diffusion model. J Saudi Soc Agric Sci 13:162–168

    Google Scholar 

  28. El-Aquar ÂA, Murr FEX (2003) Estudo e modelagem da cinética de desidratação osmótica do mamão formosa (Carica papaya L.). Food Sci Technol 23:69–75

    CAS  Google Scholar 

  29. Fito P (1994) Modelling of vacuum osmotic dehydration of food. J Food Eng 22:313–328

    Article  Google Scholar 

  30. Fito P, Chiralt A, Barat JM, Andrés A, Martínez-Monzó J, Martínez-Navarrete N (2001) J Food Eng 49:297–302

    Article  Google Scholar 

  31. Ganjloo A, Rahman RA, Bakar J, Osman A, Bimakr M (2011) Mathematical modelling of mass transfer during osmotic dehydration of seedless guava (Pisidium guajava L.) cubes. Int Food Res J 18:1105–1110

    Google Scholar 

  32. Ganjloo A, Rahman RA, Bakar J, Osman A, Bimakr M (2012) Kinetics modeling of mass transfer using Peleg’s equation during osmotic dehydration of seedless guava (Psidium guajava L.): effect of process parameters. Food Bioprocess Tech 5:2151–2159

    Article  Google Scholar 

  33. Hawkes J, Flink JM (1978) Osmotic concentration of fruit slices prior to freeze dehydration. J Food Process Preserv 2:265–284

    Article  CAS  Google Scholar 

  34. Herman-Lara E, Martínez-Sánchez CE, Pacheco-Angulo H, Carmona-García R, Ruiz-Espinosa H, Ruiz-López II (2013) Mass transfer modeling of equilibrium and dynamic periods during osmotic dehydration of radish in NaCl solutions. Food Bioprod Process 91:216–224

    Article  CAS  Google Scholar 

  35. Holowaty SA, Ramallo LA, Schmalko ME (2012) Intermittent drying simulation in a deep bed dryer of yerba mate. J Food Eng 111:110–114

    Article  Google Scholar 

  36. Hough G, Chirife J, Marini C (1993) A simple model for osmotic dehydration of apples. LWT Food Sci Technol 26:151–156

    Article  CAS  Google Scholar 

  37. Júnior JLB, Mancini MC, Hubinger MD (2013) Mass transfer kinetics and mathematical modelling of the osmotic dehydration of orange-fleshed honeydew melon in corn syrup and sucrose solutions. Int J Food Sci Technol 48:2463–2473

    Article  Google Scholar 

  38. Kaur K, Singh AK (2013) Mass transfer kinetics and optimization during osmotic dehydration of beetroot (Beta vulgaris L.). Int J Sci Res Publ 3:1–7

    Google Scholar 

  39. Kaur K, Singh AK (2013) Mathematical modelling of mass transfer for osmotic dehydration of beetroot (Beta vulgaris L.). Int J Agric 3:1–10

    Google Scholar 

  40. Kaymak-Ertekin F, Sultanoğlu M (2000) Modelling of mass transfer during osmotic dehydration of apples. J Food Eng 46:243–250

    Article  Google Scholar 

  41. Khan MAM, Ahrne L, Oliveira JC, Oliveira FAR (2008) Prediction of water and soluble solids concentration during osmotic dehydration of mango. Food Bioprod Process 86:7–13

    Article  Google Scholar 

  42. Khan MR (2012) Osmotic dehydration technique for fruits preservation—a review. Pak J Food Sci 22:71–85

    Google Scholar 

  43. Khin MM, Zhou W, Perera CO (2006) A study of the mass transfer in osmotic dehydration of coated potato cubes. J Food Eng 77:84–95

    Article  Google Scholar 

  44. Koprivica G, Mišljenović N, Bera O, Lević L (2014) Modeling of water loss during osmotic dehydration of apple cubes in sugar beet molasses. J Food Process Preserv 38:1592–1598

    Article  CAS  Google Scholar 

  45. Magee TRA, Hassaballah AA, Murphy WR (1983) Internal mass transfer during osmotic dehydration of apple slices in sugar solutions. J Food Sci Technol 7:147–155

    CAS  Google Scholar 

  46. Marcotte M, Toupin C, Le Maguer M (1991) Mass transfer in cellular tissues. Part I: the mathematical model. J Food Eng 13:199–220

    Article  Google Scholar 

  47. Marcotte M, Le Maguer M (1992) Mass transfer in cellular tissues. Part II: computer simulations vs experimental data. J Food Eng 17:177–199

    Article  Google Scholar 

  48. Matuska M, Lenart A, Lazarides HN (2006) On the use of edible coatings to monitor osmotic dehydration kinetics for minimal solids uptake. J Food Eng 72:85–91

    Article  Google Scholar 

  49. Mauro MA, Menegalli FC (2003) Evaluation of water and sucrose diffusion coefficients in potato tissue during osmotic concentration. J Food Eng 57:367–374

    Article  Google Scholar 

  50. Mayor L, Moreira R, Chenlo F, Sereno AM (2006) Kinetics of osmotic dehydration of pumpkin with sodium chloride solutions. J Food Eng 74:253–262

    Article  CAS  Google Scholar 

  51. Mebatsion HK, Verboven P, Verlinden BE, Ho QT, Nguyen TA, Nicolaï BM (2006) Microscale modelling of fruit tissue using Voronoi tessellations. Comput Electron Agric 52:36–48

    Article  Google Scholar 

  52. Mebatsion HK, Verboven P, Ho QT, Verlinden BE, Nicolaï BM (2008) Modelling fruit (micro)structures, why and how? Trends Food Sci Technol 19:59–66

    Article  CAS  Google Scholar 

  53. Mercali GD, Marczak LDF, Tessaro IC, Noreña CPZ (2011) Evaluation of water, sucrose and NaCl effective diffusivities during osmotic dehydration of banana (Musa sapientum, shum.). LWT Food Sci Technol 44:82–91

    Article  CAS  Google Scholar 

  54. Mišljenović NM, Koprivica GB, Pezo LL, Kuljanin TA, Solarov MIB, Filipĉev BV (2011) Application of Peleg model to study mass transfer during osmotic dehydration of apple in sugar beet molasses. Acta Period Technol 42:91–100

    Google Scholar 

  55. Mokhtarian M, Majd MH, Koushki F, Bakhshabadi H, Garmakhany AD, Rashidzadeh S (2014) Optimisation of pumpkin mass transfer kinetic during osmotic dehydration using artificial neural network and response surface methodology modelling. Qual Assur Saf Crops Foods 6:201–214

    Article  CAS  Google Scholar 

  56. Moorby J (1981) Transport systems in plants. Longman, London

    Google Scholar 

  57. Mujaffar S, Sankat CK (2006) The mathematical modelling of the osmotic dehydration of shark fillets at different brine temperatures. Int J Food Sci Technol 41:405–416

    Article  CAS  Google Scholar 

  58. Mújica-Paz H, Valdez-Fragoso A, López-Malo A, Palou E, Welti-Chanes J (2003) Impregnation and osmotic dehydration of some fruits: effect of the vacuum pressure and syrup concentration. J Food Eng 57:305–314

    Article  Google Scholar 

  59. Mundada M, Hathan BS, Maske S (2011) Mass transfer kinetics during osmotic dehydration of pomegranate arils. J Food Sci 7:31–39

    Article  Google Scholar 

  60. Nobel PS (1983) Biophysical plant physiology and ecology. WH Freeman, San Francisco

    Google Scholar 

  61. Nowacka M, Tylewicz U, Laghi L, Dalla Rosa M, Witrowa-Rajchert D (2014) Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chem 144:18–25

    Article  CAS  Google Scholar 

  62. Ochoa-Martinez CI, Ramaswamy HS, Ayala-Aponte AA (2007) A comparison of some mathematical models used for the prediction of mass transfer kinetics in osmotic dehydration of fruits. Dry Technol 25:1613–1620

    Article  Google Scholar 

  63. Okabe A, Boots B, Sugihara K, Chiu SN (1992) Spatial tessellations: concepts and applications of Voronoi diagrams. John Wiley and Sons, Chichester

    Google Scholar 

  64. Page G (1949) Factors influencing the maximum rates of air drying shelled corn in thin layer [MSc thesis]. Purdue University, Purdue, IN

  65. Palou E, López-Malo A, Argaiz A, Welti J (1994) The use of Peleg’s equation to model osmotic concentration of papaya. Dry Technol 12:965–978

    Article  Google Scholar 

  66. Panagiotou NM, Karathanos VT, Maroulis ZB (1998) Mass transfer modelling of the osmotic dehydration of some fruits. Int J Food Sci Technol 33:267–284

    Article  CAS  Google Scholar 

  67. Parjoko Rahman MS, Buckle KA, Perera CO (1996) Osmotic dehydration kinetics of pineapple wedges using palm sugar. LWT Food Sci Technol 29:452–459

    Article  CAS  Google Scholar 

  68. Park KJ, Bin A, Brod FPR, Park THKB (2002) Osmotic dehydration kinetics of pear D’anjou (Pyrus communis L.). J Food Eng 52:293–298

    Article  Google Scholar 

  69. Peleg M (1988) An empirical model for the description of moisture sorption curves. J Food Sci 53:1216–1219

    Article  Google Scholar 

  70. Pokharkar SM, Prasad S (1998) Mass transfer during osmotic dehydration of banana slices. J Food Sci Technol 35:336–338

    Google Scholar 

  71. Porciuncula BDA, Zotarelli MF, Carciofi BAM, Laurindo JB (2013) Determining the effective diffusion coefficient of water in banana (Prata variety) during osmotic dehydration and its use in predictive models. J Food Eng 119:490–496

    Article  Google Scholar 

  72. Raoult-Wack AL, Guilbert S, Le Maguer M, Rios G (1991) Simultaneous water and solute transport in shrinking media—Part 1. Application to dewatering and impregnation soaking process analysis (osmotic dehydration). Dry Technol 9:589–612

    Article  Google Scholar 

  73. Rastogi NK, Raghavarao KSMS (1996) Kinetics of osmotic dehydration under vacuum. LWT Food Sci Technol 29:669–672

    Article  CAS  Google Scholar 

  74. Rastogi NK, Raghavarao KSMS (1997) Water and solute diffusion coefficients of carrot as a function of temperature and concentration during osmotic dehydration. J Food Eng 34:429–440

    Article  Google Scholar 

  75. Rastogi NK, Raghavarao KSMS (2004) Mass transfer during osmotic dehydration of pineapple: considering Fickian diffusion in cubical configuration. LWT Food Sci Technol 37:43–47

    Article  CAS  Google Scholar 

  76. Rastogi NK, Raghavarao KSMS, Niranjan K (1997) Mass transfer during osmotic dehydration of banana: Fickian diffusion in cylindrical configuration. J Food Eng 31:423–432

    Article  Google Scholar 

  77. Rastogi NK, Raghavarao KSMS, Niranjan K (2014) Developments in osmotic dehydration In: Sun D (ed) Emerging technologies for food processing, 2nd edn. Academic Press, Waltham

    Google Scholar 

  78. Rodríguez MM, Arballo JR, Campañone LA, Cocconi MB, Pagano AM, Mascheroni RH (2013) Osmotic dehydration of nectarines: influence of the operating conditions and determination of the effective diffusion coefficients. Food Bioprocess Tech 6:2708–2720

    Article  Google Scholar 

  79. Ruiz-López II, Huerta-Mora IR, Vivar-Vera MA, Martínez-Sánchez CE, Herman-Lara E (2010) Effect of osmotic dehydration on air-drying characteristics of chayote. Dry Technol 28:1201–1212

    Article  Google Scholar 

  80. Salvatori D, Chiralt A, Fito P (1999) Osmotic dehydration progression in apple tissue I: spatial distribution of solutes and moisture content. J Food Eng 42:125–132

    Article  Google Scholar 

  81. Sangeeta, Hathan BS (2013) Osmotic dehydration kinetics of elephant foot yam cubes (Amorphophallus Spp.) in sucrose solution. Int J Agric Food Sci Technol 4:481–492

    Google Scholar 

  82. Santagapita P, Laghi L, Panarese V, Tylewicz U, Rocculi P, Dalla Rosa M (2013) Modification of transverse NMR relaxation times and water diffusion coefficients of kiwifruit pericarp tissue subjected to osmotic dehydration. Food Bioprocess Tech 6:1434–1443

    Article  Google Scholar 

  83. Schmidt FC, Carciofi BAM, Laurindo JB (2009) Application of diffusive and empirical models to hydration, dehydration and salt gain during osmotic treatment of chicken breast cuts. J Food Eng 91:553–559

    Article  Google Scholar 

  84. Seguí L, Fito PJ, Albors A, Fito P (2006) Mass transfer phenomena during the osmotic dehydration of apple isolated protoplasts (Malus domestica var. Fuji). J Food Eng 77:179–187

    Article  Google Scholar 

  85. Sereno AM, Moreira R, Martinez E (2001) Mass transfer coefficients during osmotic dehydration of apple in single and combined aqueous solutions of sugar and salt. J Food Eng 47:43–49

    Article  Google Scholar 

  86. Silva KS, Fernandes MA, Mauro MA (2014) Osmotic dehydration of pineapple with impregnation of sucrose, calcium, and ascorbic acid. Food Bioprocess Tech 7:385–397

    Article  CAS  Google Scholar 

  87. Singh B, Panesar PS, Nanda V (2007) Osmotic dehydration kinetics of carrot cubes in sodium chloride solution. Int J Food Sci Technol 43:1361–1370

    Article  Google Scholar 

  88. Spiazzi E, Mascheroni R (1997) Mass transfer model for osmotic dehydration of fruits and development of the simulation model. J Food Eng 34:387–410

    Article  Google Scholar 

  89. Souraki BA, Ghaffari A, Bayat Y (2012) Mathematical modeling of moisture and solute diffusion in the cylindrical green bean during osmotic dehydration in salt solution. Food Bioprod Process 90:64–71

    Article  Google Scholar 

  90. Souraki BA, Tondro H, Guavami M (2013) Modeling of mass transfer during osmotic dehydration of apple using an enhanced lumped model. Dry Technol 31:595–604

    Article  CAS  Google Scholar 

  91. Souraki BA, Guavami M, Tondro H (2014) Comparison between continuous and discontinuous method of kinetic evaluation for osmotic dehydration of cherry tomato. J Food Process Preserv 38:2167–2175

    Article  Google Scholar 

  92. Torreggiani D (1993) Osmotic dehydration in fruit and vegetable processing. Food Res Int 26:59–68

    Article  Google Scholar 

  93. Torres JD, Talens P, Escriche I, Chiralt A (2006) Influence of process conditions on mechanical properties of osmotically dehydrated mango. J Food Eng 74:240–246

    Article  CAS  Google Scholar 

  94. Tortoe C (2010) A review of osmodehydration for food industry. Afr J Food Sci 4:303–324

    CAS  Google Scholar 

  95. Toupin CJ, Marcotte M, Le Maguer M (1989) Osmotically-induced mass transfer in plant storage tissues: a mathematical model. Part I. J Food Eng 10:13–38

    Article  Google Scholar 

  96. Toupin CJ, Le Maguer M (1989) Osmotically-induced mass transfer in plant storage tissues: a mathematical model. Part II. J Food Eng 10:97–121

    Article  Google Scholar 

  97. Uddin MB, Ainsworth P (2004) Evaluation of mass exchange during osmotic dehydration of carrots using response surface methodology. J Food Eng 65:473–477

    Article  Google Scholar 

  98. van Nieuwenhuijzen NH, Zareifard MR, Ramaswamy HS (2001) Osmotic drying kinetics of cylindrical apple slices of different sizes. Dry Technol 19:525–545

    Article  Google Scholar 

  99. Waliszewski KN, Delgado JL, García MA (2002) Equilibrium concentration and water and sucrose diffusivity in osmotic dehydration of pineapple slabs. Dry Technol 20:527–538

    Article  CAS  Google Scholar 

  100. Yadav AK, Singh SV (2014) Osmotic dehydration of fruits and vegetables: a review. J Food Sci Technol 51:1654–1673

    Article  Google Scholar 

  101. Zogzas NP, Maroulis ZB (1996) Effective moisture diffusivity estimation from drying data. A comparison between various methods of analysis. Dry Technol 14:1543–1573

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Funds from FCT through Project PEst-OE/EQB/LA0016/2013. The first author acknowledges the financial support of CAPES (1528/13-0).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alcina M. M. B. Morais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assis, F.R., Morais, R.M.S.C. & Morais, A.M.M.B. Mass Transfer in Osmotic Dehydration of Food Products: Comparison Between Mathematical Models. Food Eng Rev 8, 116–133 (2016). https://doi.org/10.1007/s12393-015-9123-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-015-9123-1

Keywords

Navigation