Skip to main content
Log in

Gene expression profile analysis indicate SEPALLATA3 and AGL15 potentially involved in arabidopsis silique dehiscence by regulating glycosyl hydrolase

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Fruit dehiscence is an essential developmental process for certain economic crops that dramatically impacts crop yields and involves the altered regulation of thousands of genes and corresponding biological processes. The regulation of fruit dehiscence is complex; although some regulatory genes have been characterized, the overall mechanism is still unknown. In this study, we used microarray analysis to screen the expression patterns of genes during three stages of Arabidopsis thaliana silique dehiscence (stages 11, 15, and 17). Differentially expressed genes (DEGs) were detected, and the combination of functional enrichment analysis with Short Time-series Expression Miner (STEM) clustering analysis was used to explore the overall gene expression changes and related functions during fruit dehiscence. A total of 9 specific gene expression clusters and corresponding functions were found. Moreover, transcription factor (TF) enrichment analysis for these gene clusters showed that two TFs (SEPALLATA3 and AGL15) maybe key regulatory factors for silique dehiscence because they target many glycosyl hydrolases in a certain cluster related to cell wall degradation. Taken together, our data enable connections to be drawn among specic biological functions, genes and TFs, which supports the development of network models to elucidate the process of silique dehiscence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acajjaoui S, Zubieta C (2013) Crystallization studies of the keratinlike domain from Arabidopsis thaliana SEPALLATA 3. Struct Biol Cryst Commun 69:997–1000

    Article  CAS  Google Scholar 

  • Allen RD, Nessler CR (1984) Cytochemical localization of pectinaseactivity in laticifers of Nerium oleander L. Protoplasma 119:74–78

    Article  CAS  Google Scholar 

  • Bal AK (1974) Cellulase. Electron Microscopy of Enzymes, MA Hayat(ed). Van Nostrand Reinhold Co., New York, pp 68–76

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: Apractical and powerful approach to multiple testing. JR Stat Soc B 57:289–300

    Google Scholar 

  • Bennett EJ, Roberts JA, Wagstaff C (2011) The role of the pod in seed development: strategies for manipulating yield. New Phytol 190:838–853

    Article  PubMed  Google Scholar 

  • Bonghi ZC, Casadoro G, Ramina A, Rascio N (2006) Abscission in leaf and fruit explants of Prunus persica (L.). Batsch. New Phytol 123:555–565

    Google Scholar 

  • Bossinger G, Smyth DR (1996) Initiation patterns of flower and floral organ development in Arabidopsis thaliana. Development 1996: 122:1093–1102

    CAS  Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterton S, Punja ZK (2009) Chitinase and beta-1,3-glucanase enzyme production by the mycoparasite Clonostachys rosea f. catenulata against fungal plant pathogens. Can J Microbiol 55:356–367

    Article  CAS  PubMed  Google Scholar 

  • Child R, Chauvaux N, John K, Ulvskov P, Van Onckelen HA (1998) Ethylene bio-synthesis in oilseed rape pods in relation to pod shatter. J Exp Bot 49:829–838

    Article  CAS  Google Scholar 

  • Cho HT, Cosgrove DJ (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:9783–9788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Campillo E, Bennett AB (1996) Pedicel breakstrength and cellulase gene expression during tomato ower abscission. Plant Physiol 111:813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinneny JR, Weigel D, Yanofsky MF (2005) A genetic framework for fruit patterning in Arabidopsis thaliana. Development 132:4687–4696

    Article  CAS  PubMed  Google Scholar 

  • Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang SC, Fernandez DE (2002) Effect of regulated overexpression of the MADS domain factor AGL15 on flower senescence and fruit maturation. Plant Physiol 130:78–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan HY, Hu Y, Tudor M, Ma H (1997) Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J 12:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Ferrándiz C (2002) Regulation of fruit dehiscence in Arabidopsis. J Exp Bot 53:2031–2038

    Article  PubMed  Google Scholar 

  • Hua W, Li RJ, Zhan GM, Liu J, Li J, Wang XF (2012) Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J 69:432–444

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Shiu SH., Thoma S, Li WH. Patterson, SE (2006) Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biol 7:R87

    Article  PubMed  PubMed Central  Google Scholar 

  • Lashbrook CC, Gonzalez-Bosch C, Bennett AB (1994) Two divergent endo-b-1,4-glucanase genes exhibit overlapping expression in ripening fruits and abscising owers. Plant Cell 6:1485–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Matsumura Y, Soga K, Hoson T, Koizumi N (2007) Glycosyl hydrolases of cell wall are induced by sugar starvation in Arabidopsis. Plant Cell Physiol 48:405–413

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y (2010) Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta 232:1191–1205

    Article  CAS  PubMed  Google Scholar 

  • Lewis MW, Leslie ME, Liljegren SJ (2006) Plant separation: 50 ways to leave your mother. Curr Opin Plant Biol 9:59–65

    Article  PubMed  Google Scholar 

  • Li X, Jackson P, Rubtsov DV, Faria-Blanc N, Mortimer JC, Turner SR (2013) Development and application of a high throughput carbohydrate profiling technique for analyzing plant cell wall polysaccharides and carbohydrate active enzymes. Biotechnol Biofuels 6:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libertini E, Li Y, McQueen-Mason SJ (2004) Phylogenetic Analysis of the Plant Endo-b-1,4-Glucanase Gene Family. J Mol Evol 58:506–515

    Article  CAS  PubMed  Google Scholar 

  • Liljegren SJ, Roeder AHK, Kempin SA, Gremski K, Østergaard L, Guimil S (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116:843–853

    Article  CAS  PubMed  Google Scholar 

  • MacLeod J (1992) Harvesting in oilseed rape. Oilseed rape book. A manual for growers, farmers and advisors. Cambridge, UK, Cambridge Agricultural Publishing, pp 107–120

    Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Meakin P, Roberts J (1990a) Dehiscence of fruit in oil seed rape (Brassica napus L.) I. Anatomy of pod dehiscence. J Exp Bot 41:995–1002

    Article  Google Scholar 

  • Meakin P, Roberts J (1990b) Dehiscence of fruit in oil seed rape (Brassica napus L.) II. The role of cell wall degrading enzymes. J Exp Bot 41:1003–1011

    Article  CAS  Google Scholar 

  • Mohapatra PK, Patro L, Raval MK, Ramaswamy NK, Biswal UC, Biswal B (2010) induced loss in photosynthesis enhances cell wall beta-glucosidase activity. Physiol Plant 138:346–355

    Article  CAS  PubMed  Google Scholar 

  • Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks-Wagner DR (1990) Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2:673–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao M, Deshpande VV, Gaikwad S, Mishra C (1991) Laminarinase from Penicilliumfuniculosum and its role in release of betaglucosidase. Biotechnol Appl Biochem 13:277–285

    CAS  PubMed  Google Scholar 

  • Roberts JA, Elliott KA, Gonzalez-Carranza ZH (2002) Abscission, dehiscence, and other cell separation processes. Annu Rev Plant Biol 53:131–158

    Article  CAS  PubMed  Google Scholar 

  • Robles P, Pelaz S (2005) Flower and fruit development in Arabidopsis thaliana. Int J Dev Biol 49:633–643

    Article  CAS  PubMed  Google Scholar 

  • Seymour G, Poole M, Manning K, King GJ (2008) Genetics and epigenetics of fruit development and ripening. Curr Opin Plant Biol 11:58–63

    Article  CAS  PubMed  Google Scholar 

  • Singal HR, Sheoran IS, Singh R (1987) Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L. Plant Physiol 83:1043–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smaczniak C, Immink RG, Muiño JM, Blanvillain R, Busscher M, Busscher-Lange J (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci USA 109:1560–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth DR., Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spence J, Vercher Y, Gates P, Harris N (1996) Pod shatter in Arabidopsis thaliana, Brassica napus and B. juncea. J Microsc 181:195–203

    Article  Google Scholar 

  • Sukno S, Shimerling O, McCuiston J, Tsabary G, Shani Z, Shoseyov O (2006) Expression and Regulation of the Arabidopsis thaliana Cell Endo-1,4 β-Glucanase Gene During Compatible Plant-Nematode Interactions. J Nematol 38:354–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JE, Coupe SA, Picton S, Roberts JA (1994) Characterization and accumulation pattern of an mRNA encoding an abscissionrelated b-1,4-glucanase from leaets of Sambucusnigra. Plant Mol Biol 24:961–964

    Article  CAS  PubMed  Google Scholar 

  • Taylor JE, Webb STJ, Coupe SA, Tucker GA, Roberts JA (1993) Changes in polygalacturonase activity and solubility of polyuronides during ethylene-stimulated leaf abscission in Sambucusnigra. J Exp Bot 44:93–98

    Article  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R (2007) Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19:32–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Mori A, Jiang X, Wang Y, Yang M (2006) The INDEHISCENT protein regulates unequal cell divisions in Arabidopsis fruit. Planta 224:971–979

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Perry SE (2005) Control of expression and autoregulation of AGL15, a member of the MADS-box family. Plant J 41:583–594

    Article  PubMed  Google Scholar 

  • Østergaard L, Kempin SA, Bies D, Klee HJ, Yanofsky MF (2006) Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol J 4:45–51

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojing Wang or Hong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., He, H., Wang, T. et al. Gene expression profile analysis indicate SEPALLATA3 and AGL15 potentially involved in arabidopsis silique dehiscence by regulating glycosyl hydrolase. J. Plant Biol. 59, 133–142 (2016). https://doi.org/10.1007/s12374-016-0567-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0567-5

Keywords

Navigation