Skip to main content
Log in

Hydrogen peroxide is involved in abscisic acid-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) and hydrogen peroxide (H2O2) are important regulatory factors involved in plant development under adversity stress. Here, the involvement of H2O2 in ABA-induced adventitious root formation in cucumber (Cucumis sativus L.) under drought stress was determined. The results indicated that exogenous ABA or H2O2 promoted adventitious rooting under drought stress, with a maximal biological response at 0.5 μM ABA or 800 μM H2O2. The promotive effects of ABA-induced adventitious rooting under drought stress were suppressed by CAT or DPI, suggesting that endogenous H2O2 might be involved in ABA-induced adventitious rooting. ABA increased relative water content (RWC), leaf chlorophyll content, chlorophyll fluorescence parameters (Fv/Fm, ΦPS II and qP), water soluble carbohydrate (WSC) and soluble protein content, and peroxidase (POD), polyphenol oxidase (PPO) and indoleacetate oxidase (IAAO) activities, while decreasing transpiration rate. However, the effects of ABA were inhibited by H2O2 scavenger CAT. Therefore, H2O2 may be involved in ABA-induced adventitious root development under drought stress by stimulating water and chlorophyll content, chlorophyll fluorescence, carbohydrate and nitrogen content, as well as some enzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal S, Sairam RK, Srivastava GC, Meena RC (2005) Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol plantarum 49:541–550

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: phenol oxidase in Beta Vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Vernieri P, Irigoyen JJ, Sánchez-Díaz M, Tognoni F, Pardossi A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci 165:671–679

    Article  CAS  Google Scholar 

  • Ashraf MA, Rasheed R, Hussain I, Iqbal M, Haider MZ, Parveen S, Sajid MA (2015) Hydrogen peroxide mo dulates ant ioxidant system and nutrient relation in maize (Zea mays L.) under waterdeficit conditions. Archagrron Soil Sci 61:507–523

    CAS  Google Scholar 

  • Bai X, Todd CD, Desikan R, Yang Y, Hu X (2012) N-3-oxo-decanoyl-L-homoserine-Lactone activates auxin-induced adventitious root formation via hydrogen peroxide-and nitric oxide-dependent cyclic GMP signaling in mung bean. J Plant Physiol 158:725–736

    Article  CAS  Google Scholar 

  • Barickman TC, Kopsell DA, Sams CE (2014) Abscisic acid increases carotenoid and chlorophyll concentrations in leaves and fruit of two tomato genotypes. J Amer soc hort sci 139:261–266

    CAS  Google Scholar 

  • Beffa R, Martin HV, Pilet PE (1990) In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. Plant Physiol 94:485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belimov AA., Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG, Davies WJ (2014) Abscisic acid metabolizing rhizobacteria decrease ABA conce ntrations in planta and alter plant growth. Plant Physiol Bioch 74:84–91

    Article  CAS  Google Scholar 

  • Bensmihen S (2015) Hormonal Control of Lateral Root and Nodule Development in Legume. Plants 4:523–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of proteine-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Catola S, Marino G, Emiliani G, Huseynova T, Musayev M, Akparov Z, Maserti BE (2015) Physiological and metabolomic analysis of Punica granatum (L.) under drought stress. Planta. doi:10.1007/s00425-015-2414-1

  • Casimiro I, Marchant A, Bhalerao BP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:483–852

    Article  Google Scholar 

  • Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A Novel Function of Abscisic Acid in the Regulation of Rice (Oryza sativa L.) Root Growth and Development. Plant Cell Physiol 47:1–13

    Article  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J EXP BOP 3:581–588

    Article  Google Scholar 

  • Cui WT, Qi F, Zhang YH, Cao H, Zhang J, Wang R (2015) Wenbiao Shen, Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca2+ pathways. J. Plant Cell Rep 34:435–445

    Article  CAS  Google Scholar 

  • De Klerk GJ, Van Der Krieken W, De Jong JC (1999) The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev-Pl 35:189–199

    Article  Google Scholar 

  • Ferrer AS, Bru R, Cabanes J, Carmona FG (1988) Characterization of catecholase and cresolase activities of monastrell grape polyphenol oxidase. Phytochemistry 27:319–321

    Article  Google Scholar 

  • Fleury D, Himanen K, Cnops G, Nelissen H, Boccardi TM, Maere S, Beemster GTS, Neyt P, Anami S, Robles P, Micol JL, Inzé D, Lijsebettens MV (2007) The Arabidopsis thaliana homolog of yeast BRE1 has a function in cell cycle regulation during early leaf and root growth. Plant Cell 19:417–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparri F, Cappella P, Galvanl A (2006) Multiparametric cell cycle analysis by automated microscopy. J Biomol Screen 11:586–598

    Article  CAS  PubMed  Google Scholar 

  • Guo DL, Liang JH, Li L (2009) Abscisic acid (ABA) inhibition of lateral root formation involves endogenous ABA biosynthesis in Arachis hypogaea L. J Plant Growth Regul 58:173–179

    Article  CAS  Google Scholar 

  • Guo HJ, Sun YC, Peng XH, Wang QY, Harris M, Ge F (2015) Upregulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress. J Exp Bot. doi:10.1093/jxb/erv481

  • Haisel D, Pospí silová J, Synková H, Schnablová R, Batková P (2006) Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration. Photosynthetica 44:606–614

    Article  CAS  Google Scholar 

  • Houot V, Etienne P, Petitot AS, Barbier S, Blein JP, Suty L (2001) Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. J Exp Bot 52:1721–1730

    Article  CAS  PubMed  Google Scholar 

  • Hu XL, Jiang MY, Zhang AY, Lu J (2005) Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta 223:57–68

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi Y, Yamaguchi H, Yuasa Takashi, Iwaya-Inoue M, Arima S, Zheng SH (2011) Hydrogen peroxide spraying alleviates drought stress in soybean plants. J Plant Physiol 168:1562–1567

    Article  CAS  PubMed  Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant Microbe In 6:791–798

    Article  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxideand auxin-induced adventitious root formation in cucumber. J Exp Bot 57:1341–1351

    Article  CAS  PubMed  Google Scholar 

  • Liao WB, Xiao HL, Zhang ML (2009) Role and relationship of nitric oxide and hydrogen peroxide in adventitious root development of marigold. Acta Physiol Plant 31:1279–1289

    Article  CAS  Google Scholar 

  • Liao WB, Xiao HL, Zhang ML (2010) Effect of Nitric Oxide and Hydrogen Peroxide on Adventitious Root Development from Cuttings of Ground-Cover Chrysanthemum and Associated Biochemical Changes. Plant Growth Regul 29:338–348

    Article  CAS  Google Scholar 

  • Liao WB, Huang GB, Yu JH, Zhang ML, Shi XL (2011) Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acidinduced adventitious root development in marigold. J Hortic Sci Biotech 86:159–165

    Article  CAS  Google Scholar 

  • Liao WB, Yu JH, Huang GB, Zhang ML (2012) Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol Bioch 58:6–15

    Article  CAS  Google Scholar 

  • Li SW, Leng Y, Feng L, Zeng XY (2013) Involvement of abscisic acid in regulating antioxidative defense systems and IAAoxidase activity and improving adventitious rooting in mung bean[Vigna radiate (L.) Wilczek] seedlings under cadmium stress. J Environ Sci Pollut Res. doi 10.1007/s11356-013-1942-0

    Google Scholar 

  • Liu WC, Carns HR (1961) Isolation of abscisin, an abscission accelerating substance. Science 134:384–385

    Article  CAS  PubMed  Google Scholar 

  • Lorbiecke R, Sauter M (1999) Adventitious root growth and cellcycle induction in deepwater rice. Plant Physiol 119:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH (2004) Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot 56:417–423

    Article  PubMed  Google Scholar 

  • Munemasa S, Muroyama D, Nagahashi H, Nakamura Y, Mori IC, Mureta Y (2013) Regulation of reactive oxygen speciesmediated abscisic acid signaling in guard cells and drought tolerance by glutathione. Front Plant Sci 4:472

    Article  PubMed  PubMed Central  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1242

    Article  CAS  PubMed  Google Scholar 

  • Orabi SA, Dawood MG, Salman SR (2015) Comparative study between the physiological role of hydrogen peroxide and salicylic acid in alleviating the harmful effect of low temperature on tomato plants grown under sand-ponic culture. 9:49–59

  • Pacurar DI, Perrone I, Bellini C (2014a) Auxin is a central player in the hormone cross-talks thet control adventitious rooting. Physiol Plant 151:83–96

    Article  CAS  PubMed  Google Scholar 

  • Pacurar DI, Pacurar ML, Bussell JD, Schwambach J, Pop TI, Kowalczyk M, Gutierrez L, Cavel E, Chaabouni S, Jung KL, Fett-Neto AG, Pamfil D, Bellini C (2014b) Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation. J Exp Bot 65:1605–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey DM, Goswami CL, Kumar B (2003) Physiological effects of plant hormones in cotton under drought. Biol Plantarum 47:535–540

    Article  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JL (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Sansberro PA, Mroginski LA, Bottini R (2004) Foliar sprays with ABA promote growth of Ilex paraguariensis by alleviating diurnal water stress. Plant Growth Regul 42:105–111

    Article  CAS  Google Scholar 

  • Schnall JA, Quatrano RS (1992) Abscisic Acid Elicits the Water-Stress Response in Root Hairs of Arabidopsis thaliana. J Plant Physiol 100:216–218

    Article  CAS  Google Scholar 

  • Sgorbati S, Levi M Sparvoli E, Trezzi F, Lucchini G (1986) Cytometry and flow cytometry of 4',6-diamidino-2-pheny-lindole (DAPI) stained suspensions of nuclei released from fresh and fixed tissues of plants. Physiol Plantarum 68:471–476

    Article  CAS  Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222

    Article  CAS  PubMed  Google Scholar 

  • Shi HT, Chen YH, Qian YQ, Chan ZL (2015) Low temperatureinduced 30 (LTI30) positively regulates drought stress resistance in Arebidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation. Front Plant Sci 6:893

    PubMed  PubMed Central  Google Scholar 

  • Tal M (1966) Abnormal stomatal behavior in wilty mutants of tomato. J Plant Physiol 41:1387–1391

    Article  CAS  Google Scholar 

  • Travaglia C, Cohen AC, Reinoso H, Castillo C, Bottini R (2007) Exogenous Abscisic Acid Increases Carbohydrate Accumulation and Redistribution to the Grains in Wheat Grown Under Field Conditions of Soil Water Restriction. J Plant Growth Regul 26:285–289

    Article  CAS  Google Scholar 

  • Tuteja N (2007) Abscisic Acid and Abiotic Stress Signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Wang SY, Jiao HJ, Faust M (1991) Changes in the activities of catalase, peroxidase, and polyphenol oxidase in apple buds during bud break induced by thidiazuron. J Plant Growth Regul 10:33–39

    Article  Google Scholar 

  • Yasumura Y, Pierik R, Kelly S, Sakuta M, Voesenek LACJ, Harberd NP (2015) An ancestral role for constitutive triple response 1 Proteins in both ethylene and abscisic acid signal. Plant Physiol 169:283–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye NH, Zhu GH, Liu YG, Li YX, Zhang JH (2011) ABA Controls H2O2 Accumulation Through the Induction of OsCATB in Rice Leaves Under Water Stress. Plant Cell Physiol 52:689–698

    Article  CAS  PubMed  Google Scholar 

  • Yin CY, Duan BL, Wang X, Li CY (2004) Morphological and physiological responses of two contrasting Poplar species to drought stress and exogenous abscisic acid application. Plant Sci 167:1091–1097

    Article  CAS  Google Scholar 

  • Zavattieri A, Lima M, Sobral V, Oliveira P, Costa A (2009) Effects of carbon source, carbon concentration and culture conditions on in vitro rooting of Pinus pinea L. microshoots. Acta Hortic 812:173–180

    Article  Google Scholar 

  • Zhang F, Wang Yp, Yan YL, Wu H, Wang D, Liu JQ (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775–785

    Article  PubMed  Google Scholar 

  • Zhang X, Zhang L, Dong FC, Gao JF, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. J Plant Physiol 126:1438–1448

    Article  CAS  Google Scholar 

  • Zhuang LL, Liu MX, Yuan XY, Yang ZM, Huang BR (2015) Physiological effects of aquapori in regulating drought tolerance through overexpressing of festuca arundinacea aquaporin gene FaPIP2;1. hortic sci 140:404–412

    CAS  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16:253–277

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Biao Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XP., Xu, QQ., Liao, WB. et al. Hydrogen peroxide is involved in abscisic acid-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress. J. Plant Biol. 59, 536–548 (2016). https://doi.org/10.1007/s12374-016-0036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0036-1

Keywords

Navigation