Skip to main content
Log in

Ecological responses and remediation ability of water fern (Azolla japonica) to water pollution

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The ability of the water fern Azolla japonica to remediate phosphorus (P), nitrogen (N), and iron (Fe) contamination, and its physiological responses to three common sources of water pollution (landfill leachate, swine lagoon sewage, and fish farm sewage) and standard solution were investigated. The biomass, water content, and chlorophyll content of Azolla japonica in each solution were measured, and the concentrations and accumulation rates of polluting elements in the solutions were determined. A. japonica showed over eight-fold increase in biomass within only 20 d in every solution except in swine lagoon sewage, extremely high in N concentration. Consistent chlorophyll and water contents of the plant in most solutions showed that A. japonica can adapt to highly concentrated solutions. N, P, and Fe concentrations of the solutions decreased significantly within the 20 d. In most treatments, A. japonica showed high N accumulation and also showed total uptake of P and Fe from the solutions. In reference to this result, using this species as a phytoremediator plant would have additional benefits of helping maintaining endangered populations of A. japonica. Therefore, the plant’s fast growth, good element remediation efficiency, and conservation needs makes A. japonica a suitable plant species for pollution remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alker G (1999) Phytoremediation of nutrient rich wastewaters and leachates using Salix. Imperial College of Science Technology and Medicine, University of London, London

    Google Scholar 

  • Bazhenova MA, Bazhenova TA, Petrova GN, Mironova SA (2002) Mutual effects of substrates and inhibitors in reactions catalyzed by isolated iron-molybdenum cofactor of nitrogenase. Kinet Catal 43:592–602

    Article  CAS  Google Scholar 

  • Brown JC, Jones WE (1975) Heavy-metal toxicity in plants 1. A crisis in embryo. Commun Soil Sci Plant Anal 6:421–438

    Article  CAS  Google Scholar 

  • Cassman KG, Whitney AS, Stockinger KR (1980) Root growth and dry matter distribution of soybean as affected by phosphorus stress, nodulation, and nitrogen source. Crop Sci 20:239–244

    Article  CAS  Google Scholar 

  • Choi HG, Kim CG (2001) National investigation of inland wetlands. Korean Ministry of Environment, Seoul

    Google Scholar 

  • Costa ML, Santos MC, Carrapiço F (1999) Biomass characterization of Azolla filiculoides grown in natural ecosystems and wastewater. Hydrobiologia 415:323–327

    Article  Google Scholar 

  • Dixit S, Dhote S (2010) Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata. Environ Monit Assess 169:367–374

    Article  PubMed  CAS  Google Scholar 

  • Forni C, Chen J, Tancioni L, Grilli Caiola M (2001) Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Water Res 35:1592–1598

    Article  PubMed  CAS  Google Scholar 

  • Grady Jr. LCP, Daigger GT and Lim HC (1999) Biological wastewater treatment. 2nd edition. Basel

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Botany 57:1332–1334

    Article  CAS  Google Scholar 

  • Ito O, Watanabe I (1983) The relationship between combined nitrogen uptakes and nitrogen fixation in Azolla anabaeba symbiosis. New Phytol 95:647–654

    Article  CAS  Google Scholar 

  • Johnson GV, Mayeux PA, Evans HJ (1966) A cobalt requirement for symbiotic growth of Azolla filiculoides in the absence of combined nitrogen. Plant Physiol 41:852–855

    Article  PubMed  CAS  Google Scholar 

  • Landolt E (1986) The family of Lemnaceae — a monographic study. Veröffentlichungen des Geobotanischen Institutes der ETH, Zürich. pp 70–150

    Google Scholar 

  • Lu, Q, He Z, Graetz D, Stoffella P, Yang X (2010) Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 17:84–96

    Article  CAS  Google Scholar 

  • Marques MI, Carvalho ML, Öblad M, Amorim P, Ramos MT (1993) EDXRF analysis of trace elements in Nerium oleander for pollution monitoring. X-Ray Spectrometry 22:244–247

    Article  CAS  Google Scholar 

  • Maunder, M (1992) Plant reintroduction: an overview. Biodivers Conserv 1:51–61

    Article  Google Scholar 

  • Metzgar JS, Schneider H, Pryer KM (2007) Phylogeny and divergence time estimates for the fern genus Azolla (Salviniaceae). Int J Plant Sci 168:1045–1053

    Article  Google Scholar 

  • Moraghan JT, Rego TJ, Sahrawat KL (1983) Effect of water pretreatment on total nitrogen analysis of soils by the Kjeldahl method. Soil Sci Soc Am J 47:213–217

    Article  CAS  Google Scholar 

  • Moss B (1973) The influence of environmental factors on the distribution of freshwater algae: An experimental study: II. The role of pH and the carbon dioxide-bicarbonate system. J Ecol 61:157–177

    Article  CAS  Google Scholar 

  • Park H (2005) General growth charateristics and water treatement capacity of waterfern Azolla japonica Franch. et Savat. MD thesis. Seoul National University, Seoul

    Google Scholar 

  • Park MG (1961) Pteridophyta of Korea. Kyo-Hac press, Seoul. pp 234–235

    Google Scholar 

  • Park S, Joe KS, Han SH, Eom TY, Kim HS (1999) Characteristics and distribution of metallic elements in landfill leachates. Environ Technol 20:443–448

    Article  CAS  Google Scholar 

  • Pimentel D, Berger B, Filiberto D, Newton M, Wolfe B, Karabinakis E, Clark S, Poon E, Abbett E, Nandagopal S (2004) Water resources: Agricultural and environmental issues. Bio Sci 54:909–918

    Google Scholar 

  • Rai PK (2007) Wastewater management through biomass of Azolla pinnata: An eco-sustainable approach. AMBIO: J Human Environ 36:426–428

    Article  CAS  Google Scholar 

  • Reddy K, DeBusk W (1985) Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: II. Azolla, Duckweed, and Salvinia. Econ Bot 39:200–208

    Article  Google Scholar 

  • Sarkar A, Jana S (1986) Heavy metal pollutant tolerance of Azolla pinnata. Water, Air, and Soil Pollut 27:15–18

    Article  CAS  Google Scholar 

  • Schindler DW (1988) Effects of acid rain on freshwater ecosystems. Science 239:149–157

    Article  PubMed  CAS  Google Scholar 

  • Schnoor JL, Light LA, McCutcheon SC, Wolfe NL, Carreia LH (1995) Phytoremediation of organic and nutrient contaminants. Environl Sci Tech 29:318–323

    Google Scholar 

  • Song U (2010) Ecological monitoring and management of plant, soil and leachate channel in the Sudokwon landfill, Korea. Ph. D thesis. Seoul National University, Seoul

    Google Scholar 

  • Song U, Lee EJ (2010) Environmental and economical assessment of sewage sludge compost application on soil and plants in a landfill. Resources, Conservation and Recycling 54:1109–1116

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2003) Ecological soil screening level for iron. URL http://rais.ornl.gov/documents/eco-ssl_iron.pdf [Accessed June, 27th, 2011]

  • Vermaat JE, Khalid Hanif M (1998) Performance of common duckweed species (Lemnaceae) and the waterfern Azolla filiculoides on different types of waste water. Water Res 32:2569–2576

    Article  CAS  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochem 57–58:1–45

    Article  Google Scholar 

  • Wagner G (1997) Azolla: A review of its biology and utilization. Bot Rev 63:1–26

    Article  Google Scholar 

  • Water Management Information System (WAMIS) (2011) Environmental water quality standards. URL http://www.wamis.go.kr/WKE/WKE_WQBASE_LST.ASPX [Accessed February, 10th, 2012]

  • Weih M, Nordh N-E (2002) Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes. Biomass and Bioenergy 23:397–413

    Article  Google Scholar 

  • Weikard H-P, Seyhan D (2009) Distribution of phosphorus resources between rich and poor countries: The effect of recycling. Ecological Econ 68:1749–1755

    Article  Google Scholar 

  • Xie L, Xie P, Li S, Tang H, Liu H (2003) The low TN:TP ratio, a cause or a result of Microcystis blooms? Water Res 37:2073–2080

    Article  PubMed  CAS  Google Scholar 

  • Yauch RL, Januario T, Eberhard DA, Cavet G, Zhu W, Fu L, Pham TQ, Soriano R, Stinson J, Seshagiri S, Modrusan Z, Lin C-Y, O’Neill V, Amler LC (2005) Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 11:8686–8698

    Article  PubMed  CAS  Google Scholar 

  • Yeongsanriver Environment Research Center (YERC) (2000). Fate of pollutants and ecological changes of Juamho. Annual almanac of Korea National Institute of Environ Res 22:459–476

    Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresource Technol 101:2063–2066

    Article  CAS  Google Scholar 

  • Zimmels Y, Kirzhner F, Roitman S (2004) Use of naturally growing aquatic plants for wastewater purification. Water Environ Res 76:220–230

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Ju Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, U., Park, H. & Lee, E.J. Ecological responses and remediation ability of water fern (Azolla japonica) to water pollution. J. Plant Biol. 55, 381–389 (2012). https://doi.org/10.1007/s12374-012-0010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-012-0010-5

Keywords

Navigation