Skip to main content
Log in

Proteomics analysis of rice proteins up-regulated in response to bacterial leaf streak disease

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Bacterial leaf streak (BLS), caused by the pathogen Xanthomonas campestris pv. Oryzicola, is a major rice disease in tropical and subtropical regions of Asia. Rice proteins responsive to BLS are still not well characterized. We took a proteomics approach to identify the proteins that are up-regulated in rice leaves after infection. Approximately 1,500 protein spots were detected on each 2-D gel after silver-staining; those with increased protein levels were selected for MALDI-TOF-MS analysis. We identified 32 up-regulated proteins that might be involved in disease resistance signal transduction, pathogenesis, and regulation of cell metabolism. By using publicly available microarray data, we determined the mRNA transcripts of 23 proteins expressed in the leaves. Seven genes were analyzed by northern blots, which demonstrated that transcript levels were increased after bacterial infection. Our findings help elucidate the molecular mechanisms underlying BLS and provide a solid foundation for further research on the functions of relevant genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bischoff F, Molendijk A, Rajendrakumar CSV, Palme K (1999) GTPbinding proteins in plants. Cell Mol Life Sci 55:233–256

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Zheng W, Huang X, Zhang D, Lin X (2006) Major QTL conferring resistance to rice bacterial leaf streak. Agric Sci China 5:101–105

    Google Scholar 

  • Chen F, Huang Q, Zhang H, Lin T, Guo Y, Lin W, Chen L (2007) Proteomic analysis of rice cultivar Jiafuzhan in the responses to Xanthomonas campestris pv. Oryzicola infection. Acta Agron Sin 33:1051–1058

    CAS  Google Scholar 

  • Chen Z, Wu W, Zhou Y, Jing Y (2004) Screening of microsatellite markers for resistance to bacterial leaf streak and their application to marker-assisted selection in rice. J Fujian Agric For Univ 33:202–205

    Google Scholar 

  • Damerval C, de Vienne D, Zivy M, Thiellement H (1986) The technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Mass spectrometric identification of proteins from silverstained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601–605

    Article  PubMed  CAS  Google Scholar 

  • Han Q, Chen Z, Deng Y, Lan T, Guan H, Duan Y, Zhou Y, Lin M, Wu W (2008) Fine mapping of qBlsr5a, a QTL controlling resistance to bacterial leaf streak in rice. Acta Agron Sin 34:l–4

    Article  Google Scholar 

  • Haussühl K, Andersson B, Adamska I (2001) A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem. EMBO J 20:713–722

    Article  PubMed  Google Scholar 

  • Huang Q, Lin T, Chen F, Zhang H, Chen L (2006) Analysis of the defense responsiveness in hybrid rice Minghui63 against bacterial leaf streak (Xanthomonas oryzae pv. oryzicola) using twodimensional electrophoresis and mass spectrometry. J Xiamen Univ 45:86–90

    Google Scholar 

  • Ito Y, Saisho D, Nakazono M, Tsutsumi N, Hirai A (1997) Transcript levels of tandem-arranged alternative oxidase genes in rice are increased by low temperature. Gene 203:121–129

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Song C (2005) Regulation role of reactive oxygen species and mitogen-activated protein kinases in plant stress signaling. J Plant Physiol Mol Biol 31:1–10

    CAS  Google Scholar 

  • Jung EH, Jung HW, Lee SC, Han SW, Heu S, Hwang BK (2004) Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicum annuum. Biochim Biophys Acta 1676:211–222

    PubMed  CAS  Google Scholar 

  • Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, ShimIe S, Usui K (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Kim JY, Kim SH, Kim SJ, Lee K, Han SK, Choi HS, Jeong DH, An G, Kim SR (2004) Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice. Plant Sci 166:69–79

    Article  CAS  Google Scholar 

  • Li D, Wang L, Yang X, Zhang G, Chen L (2010) Proteomic analysis of blue light-induced twining response in Cuscuta australis. Plant Mol Biol 72:205–213

    Article  PubMed  CAS  Google Scholar 

  • Martino CD, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New phytologist 158:455–463

    Article  Google Scholar 

  • Matos AR, d’Arcy-Lameta A, Franca M, Zuily-Fodil Y, Pham-Thi AT (2000) A patatin-like protein with galactolipase activity is induced by drought stress in Vigna unguiculata leaves. Biochem Soc Trans 28:779–781

    Article  PubMed  CAS  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol 21:178–183

    Article  PubMed  CAS  Google Scholar 

  • Mortz E, Krogh TN, Vorum H, Görg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time-of-flight analysis. Proteomics 1:1359–1363

    Article  PubMed  CAS  Google Scholar 

  • Mutlu A, Gal S (1999) Plant aspartic proteinases: enzymes on the way to a function. Physiol Plant 105:569–576

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Ed 2. Cold Spring Harbor Laboratory Press, New York, pp 366–489

    Google Scholar 

  • Sasabe M, Naito K, Suenaga H, Ikeda T, Toyoda K, Inagaki Y, Shiraishi T, Ichinose Y (2007) Elicitin-responsive lectin-like receptor kinase genes in BY-2 cells. DNA Seq 18:152–159

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar P, Sharmila P, Saradhi P (2000) Proline alleviates salt stress induced enhancement in the activity of ribulose-1, 5-bisphosphate oxygenase. Biochem Biophy Res Commun 279:512–515

    Article  CAS  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Strickland JA, Orr GL, Walsh TA (1995) Inhibition of Diabrotica larval growth by patatin, the lipid acyl hydrolase from potato tubers. Plant Physiol 109:667–674

    PubMed  CAS  Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif - a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Wu W, Li W, Lu H, Worland AJ (2000) Mapping of QTLs conferring resistance to bacterial leaf streak in rice. Theor Appl Genet 101:286–291

    Article  CAS  Google Scholar 

  • TerBush DR, Maurice T, Roth D, Novick P (1996) The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J 15:6483–6494

    PubMed  CAS  Google Scholar 

  • Thomas CM, Dixon MS, Parniske M, Golstein C, Jones JD (1998) Genetic and molecular analysis of tomato Cf genes for resistance to Cladosporium fulvum. Philos Trans R Soc Lond B Biol Sci 353:1413–1424

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Wu C, Zeng L, He C, Baraoidan M, de Assis Goes da Silva F, Williams CE, Ronald PC, Leung H (2004) Isolation and characterization of rice mutants compromised in Xa21-mediated resistance to X. oryzae pv. Oryzae. Theor Appl Genet 108:379–384

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6:226

    Article  PubMed  Google Scholar 

  • Wisser KJ, Sun Q, Hulbert SH, Klesovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169:2277–2293

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23:980–988

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, et al. (2002) A draft sequence of rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zheng JS, Li YZ, Fang XJ (2005) Detection of QTL conferring resistance to bacterial leaf streak in rice chromosome 2 (O. sativa L. spp. indica). Sci Agric Sin 38:1923–1925

    Google Scholar 

  • Zörb C, Schmitt S, Neeb A, Karl S, Linder M, Schubert S (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci 167:91–100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Wang, L., Teng, S. et al. Proteomics analysis of rice proteins up-regulated in response to bacterial leaf streak disease. J. Plant Biol. 55, 316–324 (2012). https://doi.org/10.1007/s12374-011-0346-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-011-0346-2

Keywords

Navigation