Skip to main content

Advertisement

Log in

Mapping of QTLs Associated with °Brix and Biomass-Related Traits in Sorghum Using SSR Markers

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The non-renewability and greenhouse gas emission nature of crude oil led to the use of renewable plant-based biofuels as alternative energy. Sweet sorghum offers one of the best plant-based bioethanol production from its sugary stalk. Identification and mapping of quantitative trait loci associated with sugar-related traits in sorghum is a crucial step toward the improvement of the sugar content of the crop. The present study was carried out to identify and map QTLs associated with °Brix, stalk diameter and plant height using F2:3 segregating mapping populations derived from a cross between grain sorghum (Sorcoll 163) and sweet sorghum (Gambella). Phenotypic evaluation was conducted in two different environments. A genetic map was constructed using 192 F2 populations genotyped using 76 SSR markers. Estimated heritability for °Brix, stem diameter and plant height amounted to 0.88, 0.41 and 0.65, respectively. A total of seven QTLs distributed across five linkage groups that controls °Brix content were detected using Inclusive Composite Interval Mapping. Each QTL contributed 17.2–44.3% of the total phenotypic variation. The two QTLs located on linkage group SBI-05 and SBI-06 repeated in both environments. These QTLs can be the target of the breeding programs in the future due to high heritability as well as stability in two different environments. The number of SSR markers used in present study is relatively fewer and fine mapping of the target regions should be considered in order to further dissecting the region. All the detected QTLs in this study are categorized as major QTLs, and it could be used further in sweet sorghum improvement program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ayana, A. 2001. Genetic diversity in sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea. Ph.D. dissertation, Addis Ababa University, Addis Ababa, 229.

  • Bhattramakki, D., J. Dong, A.K. Chhabra, and G.E. Hart. 2000. An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43: 988–1002.

    Article  CAS  PubMed  Google Scholar 

  • Bian, Y.L., S.J. Yazaki, M. Inoue, and H.W. Cai. 2006. QTLs for sugar content of stalk in sweet Sorghum (Sorghum bicolor L. Moench). Agricultural Science of China 5: 736–744.

    Article  CAS  Google Scholar 

  • Casa, A.M., S.E. Mitchell, M.T. Hamblin, H. Sun, J.E. Bowers, A.H. Paterson, C.F. Aquadro, and S. Kresovich. 2005. Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats. Theoretical and Applied Genetics 111: 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Casa, A.M., G. Pressoir, P.J. Brown, S.E. Mitchell, W.L. Rooney, M.R. Tuinstra, C.D. Franks, and S. Kresovich. 2008. Community resources and strategies for association mapping in sorghum. Crop Science 48: 30–40.

    Article  Google Scholar 

  • Crasta, O.R., W.W. Xu, D.T. Rosenow, J. Mullet, and H.T. Nguyen. 1999. Mapping of post flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Molecule, Gene, Genetics 262: 579–588.

    Article  CAS  Google Scholar 

  • Disasa, T., T. Feyissa, A. Admassu, R. Paliwal, S.M. De Villers, and D.A. Odeny. 2016. Molecular evaluation of Ethiopian sweet sorghum germplasm and their contribution to regional breeding programs. Australian Journal of Crop Science 10: 520–527.

    Article  Google Scholar 

  • Disasa, T., T. Feyissa, and A. Admassu. 2017. Characterization of Ethiopian sweet sorghum accessions for °Brix, morphological and grain yield traits. Sugar Tech 19: 72–82.

    Article  CAS  Google Scholar 

  • Feltus, F.A., G.E. Hart, K.F. Schertz, A.M. Casa, S. Kresovich, S. Abraham, P.E. Klein, P.J. Brown, and A.H. Paterson. 2006. Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theoretical and Applied Genetics 112: 1295–1305.

    Article  CAS  PubMed  Google Scholar 

  • Gnansounou, E., A. Dauriat, and C.E. Wyman. 2005. Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresource Technology 96: 985–1002.

    Article  CAS  PubMed  Google Scholar 

  • Guan, Y., H. Wang, L. Qin, H. Zhang, Y. Yang, F. Gao, R. Li, and H. Wang. 2011. QTL mapping of bio-energy related traits in Sorghum. Euphytica 182: 431–440.

    Article  Google Scholar 

  • Harris, K., P.K. Subudhi, A. Borrell, D. Jordan, D. Rosenow, H. Nguyen, P. Klein, R. Klein, and J. Mullet. 2007. Sorghumstay-green QTL individually reduce post-flowering drought induced leaf senescence. Journal of Experimental Botany 58: 327–338.

    Article  CAS  PubMed  Google Scholar 

  • Hart, G.E., K.F. Schertz, Y. Peng, and N.Y. Syed. 2002. Genetic mapping of Sorghum bicolor(L.) Moench QTLs that control variation in tillering and other morphological characters. Theoretical and Applied Genetics 103: 1232–1242.

    Article  Google Scholar 

  • Haussmann, B.I., V. Mahalakshmi, B.V. Reddy, N. Seetharama, C.T. Hash, and H.H. Geiger. 2002. QTL mapping of stay-green in two sorghum recombinant inbred populations. Theoretical and Applied Genetics 106: 133–142.

    Article  CAS  PubMed  Google Scholar 

  • Kebede, H., P.K. Subudhi, D.T. Rosenow, and H.T. Hguyen. 2001. Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theoretical and Applied Genetics 103: 266–276.

    Article  CAS  Google Scholar 

  • Klein, P.E., R.R. Klein, S.W. Cartinhour, P.E. Ulanch, J. Dong, J.A. Obert, D.T. Morishige, S.D. Schlueter, K.L. Childs, M. Ale, and J.E. Mullet. 2000. A high throughput AFLP-based method for constructing integrated genetic and physical maps: Progress toward a sorghum genome map. Genome Research 10: 789–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosambi, D.D. 1944. The estimation of map distances from recombination values. Annuals Eugene 12: 172–175.

    Article  Google Scholar 

  • Li, H., G. Ye, and J. Wang. 2007. A modified algorithm for the improvement of composite interval mapping. Genetics 175: 361–374.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, M., N. Yuyama, L. Luo, M. Hirata, and H. Cai. 2009. In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Molecular Breeding 24: 41–47.

    Article  Google Scholar 

  • Lin, Y., K.F. Schertz, and A.H. Paterson. 1995. Comparative analysis of QTL affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141: 391–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mace, E.S., J.F. Rami, S. Bouchet, P.E. Klein, R.R. Klein, A. Kilian, P. Wenzl, L. Xia, K. Halloran,  and D.R. Jordan. 2009. A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biology 9: 1–13.

  • Menz, M.A., R.R. Klein, J.E. Mullet, J.A. Obert, N.C. Unruh, and P.E. Klein. 2002. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Molecular Biology 48: 483–499.

    Article  CAS  PubMed  Google Scholar 

  • Murray, S.C., W.L. Rooney, S.E. Mitchell, A. Sharma, P.E. Klein, J.E. Mullet, and S. Kresovich. 2008. Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Science 48: 2165–2179.

    Article  Google Scholar 

  • Murray, S.C., W.L. Rooney, S.E. Mitchell, and S. Kresovich. 2009. Sweet sorghum genetic diversity and association mapping for °Brix and height. The Plant Genome 2: 48–62.

    Article  CAS  Google Scholar 

  • Natoli, A., C. Gorni, F. Chegdani, P. Ajmone Marsan, C. Colombi, C. Lorenzoni, and A. Marocco. 2002. Identification of QTLs associated with sweet sorghum quality. Maydica 47: 311–322.

    Google Scholar 

  • Pereira, M.G., and M. Lee. 1995. Identification of genomic regions affecting plant height in sorghum and maize. Genetic Resources and Crop Evolution 90: 380–388.

    CAS  Google Scholar 

  • Rami, J.F., P. Dufour, G. Trouche, G. Fliedel, C. Mestres, F. Davrieux, P. Blanchard, and P. Hamon. 1998. Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Genetic Resources and Crop Evolution 97: 605–616.

    CAS  Google Scholar 

  • Ramu, P., K. Bantie, S. Senthilvel, C.A. Kumar, B. Jayashree, R.T. Folkertsma, L.A. Reddy, M.S. Kuruvinashetti, B.I.G. Haussmann, and C.T. Hash. 2009. Exploiting rice–sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Genetic Resources and Crop Evolution 119: 1193–1204.

    CAS  Google Scholar 

  • Reddy, B.V.S., S. Ramesh, P.S. Sanjana Reddy, B. Ramaiah, P.M. Salimath, and R. Kachapur. 2005. Sweet sorghum: A potential alternate raw material for bio-ethanol and bio-energy. Journal of SAT Agricultural Research 1: 1–8.

    Google Scholar 

  • Ritter, K.B., D.R. Jordan, S.C. Chapman, I.D. Godwin, E.S. Mace, and C.L. McIntyre. 2008. Identification of QTL for sugar-related traits in sweet and grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Molecular Breeding 22: 367–384.

    Article  Google Scholar 

  • Sanchez, A.C., P.K. Subudhi, D.T. Rosenow, and H.T. Nguyen. 2002. Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor (L.) Moench). Plant Molecular Biology 48: 713–726.

    Article  CAS  PubMed  Google Scholar 

  • Schuelke, M. 2000. An economic method for the fluorescent labelling of PCR fragments. Nature Biotechnology 18: 233–234.

    Article  CAS  PubMed  Google Scholar 

  • Shiringani, A.L., M. Frisch, and W. Friedt. 2010. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Genetic Resources and Crop Evolution 121: 323–336.

    CAS  Google Scholar 

  • Subudhi, P.K., O.R. Crasta, D.T. Rosenow, J.E. Mullet, and H.T. Nguyen. 2000. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43: 461–469.

    Article  PubMed  Google Scholar 

  • Tao, Y.Z., R.G. Henzell, D.R. Jordan, D.G. Butler, A.M. Kelly, and C.L. McIntyre. 2000. Identification of genomic regions associated with stay-green in sorghum by testing RILs in multiple environments. Genetic Resources and Crop Evolution 100: 1225–1232.

    CAS  Google Scholar 

  • Tuinstra, M.R., E.M. Grote, P.B. Goldsbrough, and G. Ejeta. 1996. Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Science 36: 1337–1344.

    Article  CAS  Google Scholar 

  • Tuinstra, M.R., E.M. Grote, P.B. Goldsbrough, and G. Ejeta. 1997. Genetic analysis of postflowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Molecular Breeding 3: 439–448.

    Article  CAS  Google Scholar 

  • Tuinstra, M.R., G. Ejeta, and P.B. Goldsbrough. 1998. Evaluation of near isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Science 38: 835–842.

    Article  Google Scholar 

  • Wang, M.L., C. Zhu, N.A. Barkley, Z. Chen, J.E. Erpelding, S.C. Murray, M.R. Tuinstra, T. Tesso, G.A. Pederson, and J. Yu. 2009. Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theoretical and Applied Genetics 120: 13–23.

    Article  PubMed  Google Scholar 

  • Wu, Y.Q., and Y. Huang. 2006. An SSR genetic map of Sorghum bicolor (L.) Moench and its comparison to published genetic map. Genome 50: 84–89.

    Article  Google Scholar 

  • Xu, W., P.K. Subudhi, O.R. Crasta, D.T. Rosenow, J.E. Mullet, and N.T. Nguyen. 2000. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43: 461–469.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are very grateful for the financial support provided by the Swedish International Development Agency (SIDA) through Bio-Innovate project. The authors also acknowledge the Lab facilities support provided by the International Crop Research for Semi-Arid Tropics (ICRISAT-Nairobi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tesfaye Disasa.

Ethics declarations

Conflict of interest

We verify that we have no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Disasa, T., Feyissa, T., Admassu, B. et al. Mapping of QTLs Associated with °Brix and Biomass-Related Traits in Sorghum Using SSR Markers. Sugar Tech 20, 275–285 (2018). https://doi.org/10.1007/s12355-018-0590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-018-0590-6

Keywords

Navigation