Skip to main content
Log in

Albuminuria Downregulation of the Anti-Aging Factor Klotho: The Missing Link Potentially Explaining the Association of Pathological Albuminuria with Premature Death

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Ten percent of the adult population has chronic kidney disease (CKD), which is diagnosed when the glomerular filtration rate (GFR) is below 60 mL/min per 1.73 m2 or when albuminuria is above 30 mg/day. The numerical thresholds were chosen because they are associated with an increased risk of CKD progression or premature death within a wider scenario of accelerated aging. Indeed, CKD is one of the fastest growing causes of death worldwide. A decreased GFR is associated with the accumulation of uraemic toxins that may promote tissue and organ damage. However, CKD may be diagnosed when the GFR is completely normal, as long as there is pathological albuminuria. A key unanswered question to stem the rise of CKD-associated deaths is whether the association between isolated albuminuria (when the GFR is normal) and premature death is causal. The recent demonstration that albuminuria per se directly suppresses the production of the anti-aging factor Klotho by kidney tubular cells may be one of the first steps to address the causality of the albuminuria–premature death–accelerated aging association. This hypothesis should be tested in interventional studies that should draw from translational science advances. Thus, the observation that albuminuria decreases Klotho production through epigenetic mechanisms implies that Klotho downregulation may persist after the correction of albuminuria, and innovative therapeutic approaches are needed to restore Klotho production. On the basis of recent literature, these may include manipulation of NF-kappaB regulators such as B cell lymphoma 3 protein (BCL-3), and epigenetic regulators such as histone deacetylases, or the repurposing of drugs such as pentoxifylline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Improving Global Outcome (KDIGO) CKD Work Group. KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1–150.

    Article  Google Scholar 

  2. Perez-Gomez MV, Bartsch LA, Castillo-Rodriguez E, et al. Clarifying the concept of chronic kidney disease for non-nephrologists. Clin Kidney J. 2019;12(2):258–61.

  3. Eckardt KU, Coresh J, Devuyst O, et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet. 2013;382:158–69.

    Article  PubMed  Google Scholar 

  4. Thomas B, Matsushita K, Abate KH, et al. Global cardiovascular and renal outcomes of reduced GFR. J Am Soc Nephrol. 2017;28:2167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375:2073–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80:1258–70.

    Article  PubMed  Google Scholar 

  7. Ortiz A, Covic A, Fliser D, et al. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet. 2014;383:1831–43.

    Article  PubMed  Google Scholar 

  8. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–210.

    Article  Google Scholar 

  9. Ortiz A, Sanchez-Nino MD, Crespo-Barrio M, et al. The Spanish Society of Nephrology (SENEFRO) commentary to the Spain GBD 2016 report: keeping chronic kidney disease out of sight of health authorities will only magnify the problem. Nefrologia. 2019;39:29–34.

    Article  PubMed  Google Scholar 

  10. Fernandez-Fernandez B, Sanchez-Nino MD, Ortiz A. Working towards novel albuminuria endpoints in chronic kidney disease. Lancet Diabetes Endocrinol. 2019;7:80–2.

    Article  PubMed  Google Scholar 

  11. Hommos MS, Glassock RJ, Rule AD. Structural and functional changes in human kidneys with healthy aging. J Am Soc Nephrol. 2017;28:2838–44.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sanchez-Nino MD, Sanz AB, Ramos AM, Ruiz-Ortega M, Ortiz A. Translational science in chronic kidney disease. Clin Sci (Lond). 2017;131:1617–29.

    Article  Google Scholar 

  13. Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22:124–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pena MJ, Stenvinkel P, Kretzler M, et al. Strategies to improve monitoring disease progression, assessing cardiovascular risk, and defining prognostic biomarkers in chronic kidney disease. Kidney Int Suppl. 2011;2017(7):107–13.

    Google Scholar 

  15. Sanchez-Nino MD, Sanz AB, Ramos AM, Fernandez-Fernandez B, Ortiz A. Clinical proteomics in kidney disease as an exponential technology: heading towards the disruptive phase. Clin Kidney J. 2017;10:188–91.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rodriguez-Ortiz ME, Pontillo C, Rodriguez M, et al. Novel urinary biomarkers for improved prediction of progressive EGFR loss in early chronic kidney disease stages and in high risk individuals without chronic kidney disease. Sci Rep. 2018;8:15940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Matsushita K, Coresh J, Sang Y, et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 2015;3:514–25.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ortiz A, Fernandez-Fernandez B. Humble kidneys predict mighty heart troubles. Lancet Diabetes Endocrinol. 2015;3:489–91.

    Article  PubMed  Google Scholar 

  19. Coresh J, Heerspink HJL, Sang Y, et al. Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes Endocrinol. 2019;7:115–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heerspink HJL, Greene T, Tighiouart H, et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 2019;7:128–39.

    Article  CAS  PubMed  Google Scholar 

  21. Duranton F, Cohen G, De Smet R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23:1258–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Castillo-Rodriguez E, Pizarro-Sanchez S, Sanz AB, et al. Inflammatory cytokines as uremic toxins: “Ni Son Todos Los Que Estan, Ni Estan Todos Los Que Son”. Toxins (Basel). 2017;9(4). https://doi.org/10.3390/toxins9040114.

  23. Castillo-Rodriguez E, Fernandez-Prado R, Esteras R, et al. Impact of altered intestinal microbiota on chronic kidney disease progression. Toxins (Basel). 2018;10(7). https://doi.org/10.3390/toxins10070300.

  24. Vanholder R, Fouque D, Glorieux G, et al. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endocrinol. 2016;4:360–73.

    Article  PubMed  Google Scholar 

  25. Kurt B, Kurtz A. Plasticity of renal endocrine function. Am J Physiol Regul Integr Comp Physiol. 2015;308:R455–66.

    Article  CAS  PubMed  Google Scholar 

  26. Neyra JA, Moe OW, Pastor J, et al. Performance of soluble Klotho assays in clinical samples of kidney disease. Clin Kidney J. 2019. https://doi.org/10.1093/ckj/sfz085.

  27. Sanchez-Niño MD, Fernandez-Fernandez B, Ortiz A. Klotho, the elusive kidney-derived anti-ageing factor. Clin Kidney J. 2019. https://doi.org/10.1093/ckj/sfz125.

  28. Fernandez-Fernandez B, Izquierdo MC, Valino-Rivas L, et al. Albumin downregulates Klotho in tubular cells. Nephrol Dial Transplant. 2018;33:1712–22.

    Article  CAS  PubMed  Google Scholar 

  29. Moreno JA, Izquierdo MC, Sanchez-Nino MD, et al. The inflammatory cytokines TWEAK and TNFalpha reduce renal klotho expression through NFkappaB. J Am Soc Nephrol. 2011;22:1315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.

    Article  CAS  PubMed  Google Scholar 

  31. Hu MC, Kuro-o M, Moe OW. The emerging role of Klotho in clinical nephrology. Nephrol Dial Transplant. 2012;27:2650–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Izquierdo MC, Perez-Gomez MV, Sanchez-Nino MD, et al. Klotho, phosphate and inflammation/ageing in chronic kidney disease. Nephrol Dial Transplant. 2012;27(Suppl 4:):iv6–v10.

    CAS  PubMed  Google Scholar 

  33. Ohnishi M, Razzaque MS. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J. 2010;24:3562–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate levels and cardiovascular disease in community-dwelling adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2008;156:556–63.

    Article  CAS  PubMed  Google Scholar 

  35. Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res. 2011;109:697–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Isakova T, Xie H, Yang W, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305:2432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kendrick J, Cheung AK, Kaufman JS, et al. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol. 2011;22:1913–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dhayat NA, Ackermann D, Pruijm M, et al. Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function. Kidney Int. 2016;90:648–57.

    Article  CAS  PubMed  Google Scholar 

  39. Lindberg K, Amin R, Moe OW, et al. The kidney is the principal organ mediating klotho effects. J Am Soc Nephrol. 2014;25:2169–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Akimoto T, Yoshizawa H, Watanabe Y, et al. Characteristics of urinary and serum soluble Klotho protein in patients with different degrees of chronic kidney disease. BMC Nephrol. 2012;13:155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Seigneux S, Courbebaisse M, Rutkowski JM, et al. Proteinuria increases plasma phosphate by altering its tubular handling. J Am Soc Nephrol. 2015;26:1608–18.

    Article  PubMed  CAS  Google Scholar 

  42. Chang AR, Lazo M, Appel LJ, Gutierrez OM, Grams ME. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III. Am J Clin Nutr. 2014;99:320–7.

    Article  CAS  PubMed  Google Scholar 

  43. McClelland R, Christensen K, Mohammed S, et al. Accelerated ageing and renal dysfunction links lower socioeconomic status and dietary phosphate intake. Aging (Albany NY). 2016;8:1135–49.

    Article  CAS  Google Scholar 

  44. Yoon CY, Park JT, Jhee JH, et al. High dietary phosphorus density is a risk factor for incident chronic kidney disease development in diabetic subjects: a community-based prospective cohort study. Am J Clin Nutr. 2017;106:311–21.

    Article  CAS  PubMed  Google Scholar 

  45. Itkonen ST, Karp HJ, Kemi VE, et al. Associations among total and food additive phosphorus intake and carotid intima-media thickness–a cross-sectional study in a middle-aged population in Southern Finland. Nutr J. 2013;12:94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fukui T, Munemura C, Maeta S, Ishida C, Murawaki Y. The effects of olmesartan and alfacalcidol on renoprotection and klotho gene expression in 5/6 nephrectomized spontaneously hypertensive rats. Yonago Acta Med. 2011;54:49–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoon HE, Ghee JY, Piao S, et al. Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant. 2011;26:800–13.

    Article  CAS  PubMed  Google Scholar 

  48. Karalliedde J, Maltese G, Hill B, Viberti G, Gnudi L. Effect of renin-angiotensin system blockade on soluble Klotho in patients with type 2 diabetes, systolic hypertension, and albuminuria. Clin J Am Soc Nephrol. 2013;8:1899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu YN, Zhou J, Li T, et al. Sulodexide protects renal tubular epithelial cells from oxidative stress-induced injury via upregulating klotho expression at an early stage of diabetic kidney disease. J Diabetes Res. 2017;2017:4989847.

    PubMed  PubMed Central  Google Scholar 

  50. Navarro-Gonzalez JF, Sanchez-Nino MD, Donate-Correa J, et al. Effects of pentoxifylline on soluble klotho concentrations and renal tubular cell expression in diabetic kidney disease. Diabetes Care. 2018;41:1817–20.

    Article  CAS  PubMed  Google Scholar 

  51. Liao HK, Hatanaka F, Araoka T, et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell. 2017;171:1495–507.e15.

    Google Scholar 

  52. Poveda J, Sanz AB, Carrasco S, et al. Bcl3: a regulator of NF-kappaB inducible by TWEAK in acute kidney injury with anti-inflammatory and antiapoptotic properties in tubular cells. Exp Mol Med. 2017;49:e352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Poveda J, Sanz AB, Rayego-Mateos S, et al. NFkappaBiz protein downregulation in acute kidney injury: modulation of inflammation and survival in tubular cells. Biochim Biophys Acta. 2016;1862:635–46.

    Article  CAS  PubMed  Google Scholar 

  54. Hum JM, O’Bryan LM, Tatiparthi AK, et al. Chronic hyperphosphatemia and vascular calcification are reduced by stable delivery of soluble Klotho. J Am Soc Nephrol. 2017;28:1162–74.

    Article  CAS  PubMed  Google Scholar 

  55. Neyra JA, Hu MC. Potential application of klotho in human chronic kidney disease. Bone. 2017;100:41–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This supplement has been funded by Kyowa Kirin.

Funding

Kyowa Kirin organized the scientific meeting and contributed to the financing of the publication of the opinion of the speakers presented at that meeting (Madrid, November 2018). Research by the authors is supported by ISCIII and FEDER funds, PI16/02057, PI15/00298, PI18/01366, Sociedad Española de Nefrología, ISCIII-RETIC REDinREN RD016/009, Comunidad de Madrid CIFRA2 B2017/BMD-3686.

Medical Writing, Editorial, and Other Assistance

The authors would like to thank Anabel Herrero PhD for providing medical writing assistance on behalf of Springer Healthcare. Kyowa Kirin funded the writing assistance provided by Springer Healthcare Ibérica SL. Ruth Blaikie provided the copy editing of this manuscript.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Authors’ Contributions

Alberto Ortiz, Beatriz Fernández–Fernández, and Maria Dolores Sánchez-Niño had the idea for the article. Alberto Ortiz, Beatriz Fernández–Fernández, Maria Dolores Sánchez-Niño, and Lara Valiño-Rivas performed the literature search and data analysis. Lara Valiño-Rivas created the illustrations. All authors contributed to and approved the final version of the article. All authors had full access to the articles reviewed in this manuscript and take complete responsibility for the integrity and accuracy of this manuscript.

Disclosures

Alberto Ortiz has received speaker fees from Kyowa Kirin for different educational projects and holds patents to prevent Klotho downmodulation through the modulation of Bcl3 expression or through the use of pentoxifylline. Maria Dolores Sánchez-Niño holds patents to prevent Klotho downmodulation through the modulation of Bcl3 expression or through the use of pentoxifylline. Beatriz Fernández and Lara Valiño declare that they have no conflict of interest.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ortiz.

Additional information

Enhanced Digital Features

To view enhanced digital features for this article go to https://doi.org/10.6084/m9.figshare.9963992.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Fernández, B., Valiño-Rivas, L., Sánchez-Niño, M.D. et al. Albuminuria Downregulation of the Anti-Aging Factor Klotho: The Missing Link Potentially Explaining the Association of Pathological Albuminuria with Premature Death. Adv Ther 37 (Suppl 2), 62–72 (2020). https://doi.org/10.1007/s12325-019-01180-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-019-01180-5

Keywords

Navigation