Skip to main content
Log in

Obesity and Bipolar Disorder: Synergistic Neurotoxic Effects?

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Bipolar disorder (BD) is a disabling and chronic neuropsychiatric disorder that is typified by a complex illness presentation, episode recurrence and by its frequent association with psychiatric and medical comorbidities. Over the past decade, obesity has emerged as one of many comorbidities generating substantial concern in the BD population due to important prognostic implications. This comprehensive review details the bidirectional relationship between obesity and BD as evidenced by alterations in the structure and function of the central nervous system, in addition to greater depressive recurrence, cognitive dysfunction and risk of suicidality. Drawing on current research results, this article presents several putative mechanisms underlying the synergistic toxic effects and provides a framework for future treatment options for the obesity–BD comorbidity. There is a need for more large-scale prospective studies to investigate the bidirectional relationships between obesity and BD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 2009;6(4):e1000058.

    PubMed  Google Scholar 

  2. Kwong JC, Campitelli MA, Rosella LC. Obesity and respiratory hospitalizations during influenza seasons in Ontario, Canada: a cohort study. Clin Infect Dis. 2011;53(5):413–21.

    PubMed  Google Scholar 

  3. Vasiliadis HM, Lesage A, Adair C, Wang PS, Kessler RC. Do Canada and the United States differ in prevalence of depression and utilization of services? Psychiatr Serv. 2007;58(1):63–71.

    PubMed  Google Scholar 

  4. Soczynska JK, Kennedy SH, Woldeyohannes HO, Liauw SS, Alsuwaidan M, Yim CY, et al. Mood disorders and obesity: understanding inflammation as a pathophysiological nexus. Neuromol Med. 2011;13(2):93–116.

    CAS  Google Scholar 

  5. McIntyre RS, Konarski JZ, Soczynska JK, Wilkins K, Panjwani G, Bouffard B, et al. Medical comorbidity in bipolar disorder: implications for functional outcomes and health service utilization. Psychiatr Serv. 2006;57(8):1140–4.

    PubMed  Google Scholar 

  6. Shah A, Shen N, El-Mallakh RS. Weight gain occurs after onset of bipolar illness in overweight bipolar patients. Ann Clin Psychiatry. 2006;18(4):239–41.

    PubMed  Google Scholar 

  7. Wildes JE, Marcus MD, Fagiolini A. Obesity in patients with bipolar disorder: a biopsychosocial-behavioral model. J Clin Psychiatry. 2006;67(6):904–15.

    PubMed  Google Scholar 

  8. Chen Y, Jiang Y, Mao Y. Association between obesity and depression in Canadians. J Womens Health (Larchmt). 2009;18(10):1687–92.

    Google Scholar 

  9. Jerrell JM, McIntyre RS, Tripathi A. A cohort study of the prevalence and impact of comorbid medical conditions in pediatric bipolar disorder. J Clin Psychiatry. 2010;71(11):1518–25.

    PubMed  Google Scholar 

  10. Dickerson FB, Brown CH, Daumit GL, Fang L, Goldberg RW, Wohlheiter K, et al. Health status of individuals with serious mental illness. Schizophr Bull. 2006;32(3):584–9.

    PubMed  Google Scholar 

  11. Calkin C, van de Velde C, Ruzickova M, Slaney C, Garnham J, Hajek T, et al. Can body mass index help predict outcome in patients with bipolar disorder? Bipolar Disord. 2009;11(6):650–6.

    PubMed  Google Scholar 

  12. Wang PW, Sachs GS, Zarate CA, Marangell LB, Calabrese JR, Goldberg JF, et al. Overweight and obesity in bipolar disorders. J Psychiatr Res. 2006;40(8):762–4.

    PubMed  Google Scholar 

  13. Fagiolini A, Frank E, Scott JA, Turkin S, Kupfer DJ. Metabolic syndrome in bipolar disorder: findings from the Bipolar Disorder Center for Pennsylvanians. Bipolar Disord. 2005;7(5):424–30.

    PubMed  Google Scholar 

  14. Fagiolini A, Frank E, Houck PR, Mallinger AG, Swartz HA, Buysse DJ, et al. Prevalence of obesity and weight change during treatment in patients with bipolar I disorder. J Clin Psychiatry. 2002;63(6):528–33.

    PubMed  CAS  Google Scholar 

  15. Fagiolini A, Kupfer DJ, Houck PR, Novick DM, Frank E. Obesity as a correlate of outcome in patients with bipolar I disorder. Am J Psychiatry. 2003;160(1):112–7.

    PubMed  Google Scholar 

  16. Kemp DE, Gao K, Ganocy SJ, Caldes E, Feldman K, Chan PK, et al. Medical and substance use comorbidity in bipolar disorder. J Affect Disord. 2009;116(1–2):64–9.

    PubMed  Google Scholar 

  17. Fagiolini A, Kupfer DJ, Rucci P, Scott JA, Novick DM, Frank E. Suicide attempts and ideation in patients with bipolar I disorder. J Clin Psychiatry. 2004;65(4):509–14.

    PubMed  Google Scholar 

  18. Yim CY, Soczynska JK, Kennedy SH, Woldeyohannes HO, Brietzke E, McIntyre RS. The effect of overweight/obesity on cognitive function in euthymic individuals with bipolar disorder. Eur Psychiatry. 2012;27(3):223–8.

    PubMed  CAS  Google Scholar 

  19. Ventimiglia J, Kalali AH, McIntyre R. Treatment of bipolar disorder. Psychiatry (Edgmont). 2009;6(10):12–4.

    Google Scholar 

  20. McIntyre RS, Kenna HA, Nguyen HT, Law CW, Sultan F, Woldeyohannes HO, et al. Brain volume abnormalities and neurocognitive deficits in diabetes mellitus: points of pathophysiological commonality with mood disorders? Adv Ther. 2010;27(2):63–80.

    Google Scholar 

  21. Bond DJ, Lang DJ, Noronha MM, Kunz M, Torres IJ, Su W, et al. The association of elevated body mass index with reduced brain volumes in first-episode mania. Biol Psychiatry. 2011;70(4):381–7.

    PubMed  Google Scholar 

  22. Kuswanto CN, Sum MY, Yang GL, Nowinski WL, McIntyre RS, Sim K. Increased body mass index makes an impact on brain white-matter integrity in adults with remitted first-episode mania. Psychol Med. 2013;26:1–9.

    Google Scholar 

  23. Dutton GR, Bodell LP, Smith AR, Joiner TE. Examination of the relationship between obesity and suicidal ideation. Int J Obes (Lond). 2013;37(9):1282–6.

    CAS  Google Scholar 

  24. Leboyer M, Soreca I, Scott J, Frye M, Henry C, Tamouza R, et al. Can bipolar disorder be viewed as a multi-system inflammatory disease? J Affect Disord. 2012;141(1):1–10.

    PubMed  Google Scholar 

  25. Barbosa IG, Rocha NP, de Miranda AS, Magalhaes PV, Huguet RB, de Souza LP, et al. Increased levels of adipokines in bipolar disorder. J Psychiatr Res. 2012;46(3):389–93.

    PubMed  Google Scholar 

  26. Bruce-Keller AJ, Keller JN, Morrison CD. Obesity and vulnerability of the CNS. Biochim Biophys Acta. 2009;1792(5):395–400.

    PubMed  CAS  Google Scholar 

  27. Tiwari HK, Patki A, Lieberman J, Stroup TS, Allison DB, Leibel RL, et al. Association of allelic variation in genes mediating aspects of energy homeostasis with weight gain during administration of antipsychotic drugs (CATIE Study). Front Genet. 2011;2:56.

    PubMed  CAS  Google Scholar 

  28. Park HR, Park M, Choi J, Park KY, Chung HY, Lee J. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett. 2010;482(3):235–9.

    PubMed  CAS  Google Scholar 

  29. Masopust J, Maly R, Valis M. Risk of venous thromboembolism during treatment with antipsychotic agents. Psychiatry Clin Neurosci. 2012;66(7):541–52.

    PubMed  CAS  Google Scholar 

  30. McIntyre RS, Alsuwaidan M, Goldstein BI, Taylor VH, Schaffer A, Beaulieu S, et al. The Canadian Network for Mood and Anxiety Treatments (CANMAT) task force recommendations for the management of patients with mood disorders and comorbid metabolic disorders. Ann Clin Psychiatry. 2012;24(1):69–81.

    PubMed  Google Scholar 

  31. McIntyre RS, Soczynska JK, Beyer JL, Woldeyohannes HO, Law CW, Miranda A, et al. Medical comorbidity in bipolar disorder: re-prioritizing unmet needs. Curr Opin Psychiatry. 2007;20(4):406–16.

    PubMed  Google Scholar 

  32. Jerrell JM, McIntyre RS, Tripathi A. Childhood treatment with psychotropic medication and development of comorbid medical conditions in adolescent-onset bipolar disorder. Hum Psychopharmacol. 2011;26(7):451–9.

    PubMed  Google Scholar 

  33. Goldstein TR, Goldstein BI, Mantz MB, Bailey B, Douaihy A. A brief motivational intervention for preventing medication-associated weight gain among youth with bipolar disorder: treatment development and case report. J Child Adolesc Psychopharmacol. 2011;21(3):275–80.

    PubMed  Google Scholar 

  34. Lee NY, Kim SH, Cho B, Lee YJ, Chang JS, Kang UG, et al. Patients taking medications for bipolar disorder are more prone to metabolic syndrome than Korea’s general population. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(7):1243–9.

    PubMed  Google Scholar 

  35. Adler CM, Adams J, DelBello MP, Holland SK, Schmithorst V, Levine A, et al. Evidence of white matter pathology in bipolar disorder adolescents experiencing their first episode of mania: a diffusion tensor imaging study. Am J Psychiatry. 2006;163(2):322–4.

    PubMed  Google Scholar 

  36. Beyer JL, Taylor WD, MacFall JR, Kuchibhatla M, Payne ME, Provenzale JM, et al. Cortical white matter microstructural abnormalities in bipolar disorder. Neuropsychopharmacology. 2005;30(12):2225–9.

    PubMed  Google Scholar 

  37. Macritchie KA, Lloyd AJ, Bastin ME, Vasudev K, Gallagher P, Eyre R, et al. White matter microstructural abnormalities in euthymic bipolar disorder. Br J Psychiatry. 2010;196(1):52–8.

    PubMed  Google Scholar 

  38. Yurgelun-Todd DA, Silveri MM, Gruber SA, Rohan ML, Pimentel PJ. White matter abnormalities observed in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord. 2007;9(5):504–12.

    PubMed  Google Scholar 

  39. Bruno S, Cercignani M, Ron MA. White matter abnormalities in bipolar disorder: a voxel-based diffusion tensor imaging study. Bipolar Disord. 2008;10(4):460–8.

    PubMed  Google Scholar 

  40. Kafantaris V, Kingsley P, Ardekani B, Saito E, Lencz T, Lim K, et al. Lower orbital frontal white matter integrity in adolescents with bipolar I disorder. J Am Acad Child Adolesc Psychiatry. 2009;48(1):79–86.

    PubMed  Google Scholar 

  41. Mahon K, Wu J, Malhotra AK, Burdick KE, DeRosse P, Ardekani BA, et al. A voxel-based diffusion tensor imaging study of white matter in bipolar disorder. Neuropsychopharmacology. 2009;34(6):1590–600.

    PubMed  Google Scholar 

  42. Sussmann JE, Lymer GK, McKirdy J, Moorhead TW, Munoz MS, Job D, et al. White matter abnormalities in bipolar disorder and schizophrenia detected using diffusion tensor magnetic resonance imaging. Bipolar Disord. 2009;11(1):11–8.

    PubMed  Google Scholar 

  43. Wessa M, Houenou J, Leboyer M, Chanraud S, Poupon C, Martinot JL, et al. Microstructural white matter changes in euthymic bipolar patients: a whole-brain diffusion tensor imaging study. Bipolar Disord. 2009;11(5):504–14.

    PubMed  Google Scholar 

  44. Barnea-Goraly N, Chang KD, Karchemskiy A, Howe ME, Reiss AL. Limbic and corpus callosum aberrations in adolescents with bipolar disorder: a tract-based spatial statistics analysis. Biol Psychiatry. 2009;66(3):238–44.

    PubMed  Google Scholar 

  45. McIntosh AM, Munoz MS, Lymer GK, McKirdy J, Hall J, Sussmann JE, et al. White matter tractography in bipolar disorder and schizophrenia. Biol Psychiatry. 2008;64(12):1088–92.

    PubMed  Google Scholar 

  46. Verstynen TD, Weinstein AM, Schneider WW, Jakicic JM, Rofey DL, Erickson KI. Increased body mass index is associated with a global and distributed decrease in white matter microstructural integrity. Psychosom Med. 2012;74(7):682–90.

    PubMed  Google Scholar 

  47. Lochhead RA, Parsey RV, Oquendo MA, Mann JJ. Regional brain gray matter volume differences in patients with bipolar disorder as assessed by optimized voxel-based morphometry. Biol Psychiatry. 2004;55(12):1154–62.

    PubMed  Google Scholar 

  48. Haznedar MM, Roversi F, Pallanti S, Baldini-Rossi N, Schnur DB, Licalzi EM, et al. Fronto-thalamo-striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biol Psychiatry. 2005;57(7):733–42.

    PubMed  Google Scholar 

  49. Taki Y, Kinomura S, Sato K, Inoue K, Goto R, Okada K, et al. Relationship between body mass index and gray matter volume in 1,428 healthy individuals. Obesity (Silver Spring). 2008;16(1):119–24.

    Google Scholar 

  50. Pannacciulli N, Del PA, Chen K, Le DS, Reiman EM, Tataranni PA. Brain abnormalities in human obesity: a voxel-based morphometric study. Neuroimage. 2006;31(4):1419–25.

    PubMed  Google Scholar 

  51. Yokum S, Ng J, Stice E. Relation of regional gray and white matter volumes to current BMI and future increases in BMI: a prospective MRI study. Int J Obes (Lond). 2012;36(5):656–64.

    CAS  Google Scholar 

  52. Kilpatrick L, Cahill L. Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. Neuroimage. 2003;20(4):2091–9.

    PubMed  Google Scholar 

  53. Blumberg HP, Kaufman J, Martin A, Whiteman R, Zhang JH, Gore JC, et al. Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch Gen Psychiatry. 2003;60(12):1201–8.

    PubMed  Google Scholar 

  54. Chang K, Karchemskiy A, Barnea-Goraly N, Garrett A, Simeonova DI, Reiss A. Reduced amygdalar gray matter volume in familial pediatric bipolar disorder. J Am Acad Child Adolesc Psychiatry. 2005;44(6):565–73.

    PubMed  Google Scholar 

  55. Rosso IM, Cintron CM, Steingard RJ, Renshaw PF, Young AD, Yurgelun-Todd DA. Amygdala and hippocampus volumes in pediatric major depression. Biol Psychiatry. 2005;57(1):21–6.

    PubMed  Google Scholar 

  56. Dickstein DP, Milham MP, Nugent AC, Drevets WC, Charney DS, Pine DS, et al. Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based morphometry study. Arch Gen Psychiatry. 2005;62(7):734–41.

    PubMed  Google Scholar 

  57. Berretta S, Pantazopoulos H, Lange N. Neuron numbers and volume of the amygdala in subjects diagnosed with bipolar disorder or schizophrenia. Biol Psychiatry. 2007;62(8):884–93.

    PubMed  Google Scholar 

  58. Bezchlibnyk YB, Sun X, Wang JF, MacQueen GM, McEwen BS, Young LT. Neuron somal size is decreased in the lateral amygdalar nucleus of subjects with bipolar disorder. J Psychiatry Neurosci. 2007;32(3):203–10.

    PubMed  Google Scholar 

  59. Shin AC, Zheng H, Berthoud HR. An expanded view of energy homeostasis: neural integration of metabolic, cognitive, and emotional drives to eat. Physiol Behav. 2009;97(5):572–80.

    PubMed  CAS  Google Scholar 

  60. Stoeckel LE, Kim J, Weller RE, Cox JE, Cook EW III, Horwitz B. Effective connectivity of a reward network in obese women. Brain Res Bull. 2009;79(6):388–95.

    PubMed  Google Scholar 

  61. Millan MJ, Agid Y, Brune M, Bullmore ET, Carter CS, Clayton NS, et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov. 2012;11(2):141–68.

    PubMed  CAS  Google Scholar 

  62. Bora E, Yucel M, Pantelis C. Cognitive endophenotypes of bipolar disorder: a meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. J Affect Disord. 2009;113(1–2):1–20.

    PubMed  Google Scholar 

  63. Mann-Wrobel MC, Carreno JT, Dickinson D. Meta-analysis of neuropsychological functioning in euthymic bipolar disorder: an update and investigation of moderator variables. Bipolar Disord. 2011;13(4):334–42.

    PubMed  Google Scholar 

  64. Cohen RA. Obesity-associated cognitive decline: excess weight affects more than the waistline. Neuroepidemiology. 2010;34(4):230–1.

    PubMed  Google Scholar 

  65. Sellbom KS, Gunstad J. Cognitive function and decline in obesity. J Alzheimers Dis. 2012;30(Suppl 2):S89–95.

    PubMed  Google Scholar 

  66. McElroy SL, Keck PE Jr. Obesity in bipolar disorder: an overview. Curr Psychiatry Rep. 2012;14(6):650–8.

    PubMed  Google Scholar 

  67. Krishnan KR. Psychiatric and medical comorbidities of bipolar disorder. Psychosom Med. 2005;67(1):1–8.

    PubMed  Google Scholar 

  68. Klinitzke G, Steinig J, Bluher M, Kersting A, Wagner B. Obesity and suicide risk in adults—a systematic review. J Affect Disord. 2013;145(3):277–84.

    PubMed  CAS  Google Scholar 

  69. Fernandes BS, Gama CS, Walz JC, Cereser KM, Fries GR, Colpo G, et al. Increased neurotrophin-3 in drug-free subjects with bipolar disorder during manic and depressive episodes. J Psychiatr Res. 2010;44(9):561–5.

    PubMed  Google Scholar 

  70. Cunha AB, Frey BN, Andreazza AC, Goi JD, Rosa AR, Goncalves CA, et al. Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci Lett. 2006;398(3):215–9.

    PubMed  CAS  Google Scholar 

  71. de Oliveira GS, Cereser KM, Fernandes BS, Kauer-Sant’Anna M, Fries GR, Stertz L, et al. Decreased brain-derived neurotrophic factor in medicated and drug-free bipolar patients. J Psychiatr Res. 2009;43(14):1171–4.

    PubMed  Google Scholar 

  72. Grande I, Magalhaes PV, Chendo I, Stertz L, Fries GR, Cereser KM, et al. Val66Met polymorphism and serum brain-derived neurotrophic factor in bipolar disorder: an open-label trial. Acta Psychiatr Scand. 2013;1–8 [Epub ahead of print]. doi:10.1111/acps.12192.

  73. Fan J, Sklar P. Genetics of bipolar disorder: focus on BDNF Val66Met polymorphism. Novartis Found Symp. 2008;289:60–72.

    PubMed  CAS  Google Scholar 

  74. Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M. Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J Neurosci. 2007;27(52):14265–74.

    PubMed  CAS  Google Scholar 

  75. Shugart YY, Chen L, Day IN, Lewis SJ, Timpson NJ, Yuan W, et al. Two British women studies replicated the association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) and BMI. Eur J Hum Genet. 2009;17(8):1050–5.

    PubMed  CAS  Google Scholar 

  76. Rothman SM, Griffioen KJ, Wan R, Mattson MP. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health. Ann N Y Acad Sci. 2012;1264(1):49–63.

    PubMed  CAS  Google Scholar 

  77. Herieka M, Erridge C. High-fat meal induced postprandial inflammation. Mol Nutr Food Res. 2013 [Epub ahead of print]. doi:10.1002/mnfr.201300104.

  78. Bray GA. Obesity: the disease. J Med Chem. 2006;49(14):4001–7.

    PubMed  CAS  Google Scholar 

  79. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732–41.

    PubMed  CAS  Google Scholar 

  80. Dantzer R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol. 2004;500(1–3):399–411.

    PubMed  CAS  Google Scholar 

  81. Munkholm K, Brauner JV, Kessing LV, Vinberg M. Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res. 2013;47(9):1119–33.

    PubMed  Google Scholar 

  82. Dickerson F, Stallings C, Origoni A, Boronow J, Yolken R. Elevated serum levels of C-reactive protein are associated with mania symptoms in outpatients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(4):952–5.

    PubMed  CAS  Google Scholar 

  83. Gildengers A, Tatsuoka C, Bialko C, Cassidy KA, Al Jurdi RK, Gyulai L, et al. Correlates of treatment response in depressed older adults with bipolar disorder. J Geriatr Psychiatry Neurol. 2012;25(1):37–42.

    PubMed  Google Scholar 

  84. Bowden CL, Calabrese JR, Ketter TA, Sachs GS, White RL, Thompson TR. Impact of lamotrigine and lithium on weight in obese and nonobese patients with bipolar I disorder. Am J Psychiatry. 2006;163(7):1199–201.

    PubMed  Google Scholar 

  85. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev. 2011;35(3):804–17.

    PubMed  CAS  Google Scholar 

  86. Maes M, Kubera M, Obuchowiczwa E, Goehler L, Brzeszcz J. Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative & nitrosative stress pathways. Neuro Endocrinol Lett. 2011;32(1):7–24.

    PubMed  CAS  Google Scholar 

  87. Stertz L, Magalhaes PV, Kapczinski F. Is bipolar disorder an inflammatory condition? The relevance of microglial activation. Curr Opin Psychiatry. 2013;26(1):19–26.

    PubMed  Google Scholar 

  88. Bazan NG. Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol Neurobiol. 2005;32(1):89–103.

    PubMed  CAS  Google Scholar 

  89. Odebrecht VH, Vargas Nunes SO, Pizzo de Castro M, Cristina BC, Sabbatini BD, Kaminami MH, et al. Oxidative stress and lowered total antioxidant status are associated with a history of suicide attempts. J Affect Disord. 2013;150(3):923–30.

    Google Scholar 

  90. Wang JF, Shao L, Sun X, Young LT. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord. 2009;11(5):523–9.

    PubMed  CAS  Google Scholar 

  91. Kato T. The role of mitochondrial dysfunction in bipolar disorder. Drug News Perspect. 2006;19(10):597–602.

    PubMed  CAS  Google Scholar 

  92. Kato T. Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci. 2007;61(1):3–19.

    PubMed  CAS  Google Scholar 

  93. Kato T. Mitochondrial dysfunction as the molecular basis of bipolar disorder: therapeutic implications. CNS Drugs. 2007;21(1):1–11.

    PubMed  CAS  Google Scholar 

  94. Lenaz G, Fato R, Formiggini G, Genova ML. The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion. 2007;7(Suppl):S8–33.

    PubMed  CAS  Google Scholar 

  95. Saretzki G, Von ZT. Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci. 2002;959:24–9.

    PubMed  CAS  Google Scholar 

  96. Elvsashagen T, Vera E, Boen E, Bratlie J, Andreassen OA, Josefsen D, et al. The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder. J Affect Disord. 2011;135(1–3):43–50.

    PubMed  Google Scholar 

  97. Medina-Gomez G. Mitochondria and endocrine function of adipose tissue. Best Pract Res Clin Endocrinol Metab. 2012;26(6):791–804.

    PubMed  CAS  Google Scholar 

  98. Bondia-Pons I, Ryan L, Martinez JA. Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem. 2012;68(4):701–11.

    PubMed  CAS  Google Scholar 

  99. Cui Y, Gao YT, Cai Q, Qu S, Cai H, Li HL, et al. Associations of leukocyte telomere length with body anthropometric indices and weight change in chinese women. Obesity (Silver Spring). 2013;1–7 [Epub ahead of print]. doi:10.1002/oby.20321.

  100. Kim S, Parks CG, DeRoo LA, Chen H, Taylor JA, Cawthon RM, et al. Obesity and weight gain in adulthood and telomere length. Cancer Epidemiol Biomarkers Prev. 2009;18(3):816–20.

    PubMed  CAS  Google Scholar 

  101. McGinty EE, Zhang Y, Guallar E, Ford DE, Steinwachs D, Dixon LB, et al. Cancer incidence in a sample of Maryland residents with serious mental illness. Psychiatr Serv. 2012;63(7):714–7.

    PubMed  Google Scholar 

  102. Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R. The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):702–21.

    PubMed  CAS  Google Scholar 

  103. Myint AM, Kim YK, Verkerk R, Scharpe S, Steinbusch H, Leonard B. Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord. 2007;98(1–2):143–51.

    PubMed  CAS  Google Scholar 

  104. Muller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry. 2007;12(11):988–1000.

    PubMed  CAS  Google Scholar 

  105. Moron JA, Zakharova I, Ferrer JV, Merrill GA, Hope B, Lafer EM, et al. Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity. J Neurosci. 2003;23(24):8480–8.

    PubMed  CAS  Google Scholar 

  106. Berridge KC, Ho CY, Richard JM, Difeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010;2(1350):43–64.

    Google Scholar 

  107. McIntyre RS, McElroy SL, Konarski JZ, Soczynska JK, Bottas A, Castel S, et al. Substance use disorders and overweight/obesity in bipolar I disorder: preliminary evidence for competing addictions. J Clin Psychiatry. 2007;68(9):1352–7.

    PubMed  Google Scholar 

  108. Musselman DL, Betan E, Larsen H, Phillips LS. Relationship of depression to diabetes types 1 and 2: epidemiology, biology, and treatment. Biol Psychiatry. 2003;54(3):317–29.

    PubMed  Google Scholar 

  109. Thaler JP, Choi SJ, Schwartz MW, Wisse BE. Hypothalamic inflammation and energy homeostasis: resolving the paradox. Front Neuroendocrinol. 2010;31(1):79–84.

    PubMed  CAS  Google Scholar 

  110. Nieto-Vazquez I, Fernandez-Veledo S, Kramer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem. 2008;114(3):183–94.

    PubMed  CAS  Google Scholar 

  111. Venters HD, Dantzer R, Kelley KW. A new concept in neurodegeneration: TNFalpha is a silencer of survival signals. Trends Neurosci. 2000;23(4):175–80.

    PubMed  CAS  Google Scholar 

  112. Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord. 2003;27(Suppl 3):S53–5.

    PubMed  CAS  Google Scholar 

  113. Boghossian S, Lemmon K, Park M, York DA. High-fat diets induce a rapid loss of the insulin anorectic response in the amygdala. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1302–11.

    PubMed  CAS  Google Scholar 

  114. McIntyre RS, Soczynska JK, Woldeyohannes HO, Miranda A, Vaccarino A, Macqueen G, et al. A randomized, double-blind, controlled trial evaluating the effect of intranasal insulin on neurocognitive function in euthymic patients with bipolar disorder. Bipolar Disord. 2012;14(7):697–706.

    PubMed  CAS  Google Scholar 

  115. Bornstein SR, Schuppenies A, Wong ML, Licinio J. Approaching the shared biology of obesity and depression: the stress axis as the locus of gene-environment interactions. Mol Psychiatry. 2006;11(10):892–902.

    PubMed  CAS  Google Scholar 

  116. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307–12.

    PubMed  CAS  Google Scholar 

  117. Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J Immunol. 2005;174(9):5789–95.

    PubMed  CAS  Google Scholar 

  118. Weber-Hamann B, Kratzsch J, Kopf D, Lederbogen F, Gilles M, Heuser I, et al. Resistin and adiponectin in major depression: the association with free cortisol and effects of antidepressant treatment. J Psychiatr Res. 2007;41(3–4):344–50.

    PubMed  Google Scholar 

  119. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100(25):2473–6.

    PubMed  CAS  Google Scholar 

  120. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000;96(5):1723–32.

    PubMed  CAS  Google Scholar 

  121. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8(7):731–7.

    PubMed  CAS  Google Scholar 

  122. Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab. 2002;13(2):84–9.

    PubMed  CAS  Google Scholar 

  123. Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC. Leptin regulates striatal regions and human eating behavior. Science. 2007;317(5843):1355.

    PubMed  CAS  Google Scholar 

  124. Rosenbaum M, Murphy EM, Heymsfield SB, Matthews DE, Leibel RL. Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab. 2002;87(5):2391–4.

    PubMed  CAS  Google Scholar 

  125. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394(6696):897–901.

    PubMed  CAS  Google Scholar 

  126. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70.

    PubMed  CAS  Google Scholar 

  127. Lu XY, Kim CS, Frazer A, Zhang W. Leptin: a potential novel antidepressant. Proc Natl Acad Sci USA. 2006;103(5):1593–8.

    PubMed  CAS  Google Scholar 

  128. Eikelis N, Esler M, Barton D, Dawood T, Wiesner G, Lambert G. Reduced brain leptin in patients with major depressive disorder and in suicide victims. Mol Psychiatry. 2006;11(9):800–1.

    PubMed  CAS  Google Scholar 

  129. Yamada N, Katsuura G, Ochi Y, Ebihara K, Kusakabe T, Hosoda K, et al. Impaired CNS leptin action is implicated in depression associated with obesity. Endocrinology. 2011;152(7):2634–43.

    PubMed  CAS  Google Scholar 

  130. Ceulemans S, De ZS, Heyrman L, Norrback KF, Nordin A, Nilsson LG, et al. Evidence for the involvement of the glucocorticoid receptor gene in bipolar disorder in an isolated northern Swedish population. Bipolar Disord. 2011;13(7–8):614–23.

    PubMed  CAS  Google Scholar 

  131. Wang Q, Verweij EW, Krugers HJ, Joels M, Swaab DF, Lucassen PJ. Distribution of the glucocorticoid receptor in the human amygdala; changes in mood disorder patients. Brain Struct Funct. 2013;1–12 [Epub ahead of print]. doi:10.1007/s00429-013-0589-4.

  132. Kamali M, Saunders EF, Prossin AR, Brucksch CB, Harrington GJ, Langenecker SA, et al. Associations between suicide attempts and elevated bedtime salivary cortisol levels in bipolar disorder. J Affect Disord. 2012;136(3):350–8.

    PubMed  CAS  Google Scholar 

  133. Lopresti AL, Drummond PD. Obesity and psychiatric disorders: commonalities in dysregulated biological pathways and their implications for treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:92–9.

    PubMed  CAS  Google Scholar 

  134. McIntyre RS, Powell AM, Kaidanovich-Beilin O, Soczynska JK, Alsuwaidan M, Woldeyohannes HO, et al. The neuroprotective effects of GLP-1: possible treatments for cognitive deficits in individuals with mood disorders. Behav Brain Res. 2013;15(237):164–71.

    Google Scholar 

  135. Matikainen N, Bogl LH, Hakkarainen A, Lundbom J, Lundbom N, Kaprio J, et al. GLP-1 responses are heritable and blunted in acquired obesity with high liver fat and insulin resistance. Diabetes Care. 2013 [Epub ahead of print]. doi:10.2337/dc13-1283.

  136. Lucas K, Maes M. Role of the Toll Like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 Pathway. Mol Neurobiol. 2013;48(1):190–204.

    PubMed  CAS  Google Scholar 

  137. O’Neil A, Sanna L, Redlich C, Sanderson K, Jacka F, Williams LJ, et al. The impact of statins on psychological wellbeing: a systematic review and meta-analysis. BMC Med. 2012;10:154.

    PubMed  Google Scholar 

  138. Krag DN, Theon AP, Gan L. Hyperthermic enhancement of rhodamine 123 cytotoxicity in B16 mouse melanoma cells in vitro. Cancer Res. 1990;50(8):2385–9.

    PubMed  CAS  Google Scholar 

  139. Maes M, Fisar Z, Medina M, Scapagnini G, Nowak G, Berk M. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates—Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology. 2012;20(3):127–50.

    PubMed  CAS  Google Scholar 

  140. Stafford L, Berk M. The use of statins after a cardiac intervention is associated with reduced risk of subsequent depression: proof of concept for the inflammatory and oxidative hypotheses of depression? J Clin Psychiatry. 2011;72(9):1229–35.

    PubMed  CAS  Google Scholar 

  141. Kip KE, Marroquin OC, Kelley DE, Johnson BD, Kelsey SF, Shaw LJ, et al. Clinical importance of obesity versus the metabolic syndrome in cardiovascular risk in women: a report from the Women’s Ischemia Syndrome Evaluation (WISE) study. Circulation. 2004;109(6):706–13.

    PubMed  Google Scholar 

  142. McIntyre RS, Soczynska JK, Liauw SS, Woldeyohannes HO, Brietzke E, Nathanson J, et al. The association between childhood adversity and components of metabolic syndrome in adults with mood disorders: results from the international mood disorders collaborative project. Int J Psychiatry Med. 2012;43(2):165–77.

    PubMed  Google Scholar 

  143. van Reedt Dortland AK, Giltay EJ, van Veen T, Zitman FG, Penninx BW. Personality traits and childhood trauma as correlates of metabolic risk factors: the Netherlands Study of Depression and Anxiety (NESDA). Prog Neuropsychopharmacol Biol Psychiatry. 2012;36(1):85–91.

    PubMed  Google Scholar 

  144. Danese A, Tan M. Childhood maltreatment and obesity: systematic review and meta-analysis. Mol Psychiatry. 2013;1–11. doi:10.1038/mp.2013.54.

Download references

Acknowledgments

The authors would like to acknowledge D. Cha, J. Soczynska L.A. Gallaugher, H. Woldeyohannes, and B. DeFreitas from the Mood Disorders Psychopharmacology Unit. No funding or sponsorship was received for the publication of this article. Celina Liu is the guarantor for this article, and takes responsibility for the integrity of the work as a whole.

Conflict of interest

Roger S. McIntyre has received research grants from Stanley Medical Research Institute, National Alliance for Research on Schizophrenia and Depression (NARSAD), National Institutes of Mental Health, Eli Lilly, Janssen-Ortho, Shire, Astra-Zeneca, Pfizer, Lundbeck, Forest, Sepracor, and BMS; has served on advisory boards for Astra-Zeneca, Bristol-Myers Squibb, Janssen-Ortho, Eli Lilly, Lundbeck, Pfizer, Shire, Merck, Sepracor and Otsuka; has served on speakers bureaus for Janssen-Ortho, Astra Zeneca, Eli Lilly, Lundbeck, Merck, Pfizer, and Otsuka; and CME activities for Astra Zeneca, Bristol-Myers Squibb, Physicians’ Postgraduate Press, CME Outfitters, Merck, Eli Lilly, Pfizer, Lundbeck and Otsuka. Andre F. Carvalho had received speakers’ honoraria from Abbott, Libbs Farmaceutica, GSK and Lundbeck. Celina S. Liu declares no conflict of interest. Rodrigo B. Mansur declares no conflict of interest.

Compliance with ethics guidelines

This article is based on previously conducted studies, and does not involve any new studies of human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger S. McIntyre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C.S., Carvalho, A.F., Mansur, R.B. et al. Obesity and Bipolar Disorder: Synergistic Neurotoxic Effects?. Adv Ther 30, 987–1006 (2013). https://doi.org/10.1007/s12325-013-0067-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-013-0067-7

Keywords

Navigation