Skip to main content
Log in

Brain volume abnormalities and neurocognitive deficits in diabetes mellitus: Points of pathophysiological commonality with mood disorders?

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Background

It is hypothesized that diabetes mellitus (DM) and mood disorders share points of pathophysiological commonality in the central nervous system.

Methods

A PubMed search of all English-language articles published between 1966 and March 2009 was performed with the following search terms: depression, mood disorders, hippocampus, amygdala, central nervous system, brain, neuroimaging, volumetric, morphometric, and neurocognitive deficits, cross-referenced with DM. Articles selected for review were based on adequacy of sample size, the use of standardized experimental procedures, validated assessment measures, and overall manuscript quality. The primary author was principally responsible for adjudicating the merit of articles that were included.

Results

Volumetric studies indicate that individuals with Type 1/2 DM exhibit regional abnormalities in both cortical and subcortical (eg, hippocampus, amygdala) brain structures. The pattern of neurocognitive deficits documented in individuals with Type 1 DM overlap with Type 2 populations, with suggestions of discrete abnormalities unique to each phenotype. The pattern of volumetric and neurocognitive deficits in diabetic populations are highly similar to that reported in populations of individuals with major depressive disorder.

Conclusion

The prevailing models of disease pathophysiology in DM and major depressive disorder are distinct. Notwithstanding, the common abnormalities observed in disparate effector systems (eg, insulin resistance, immunoinflammatory activation) as well as brain volume and neurocognitive performance provide the nexus for hypothesizing that both conditions are subserved by overlapping pathophysiology. This conception provides a novel framework for disease modeling and treatment development in mood disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2004;27:S5–S10.

    Article  Google Scholar 

  2. Reske-Nielsen E, Lundbaek K. Diabetic encephalopathy. Diffuse and focal lesions of the brain in long-term diabetes. Acta Neurol Scand. 1963;39(suppl. 4):90.

    Google Scholar 

  3. McIntyre RS, Soczynska JK, Konarski JZ, et al. Should depressive syndromes be reclassified as “metabolic syndrome type II”? Ann Clin Psychiatry. 2007;19:257–264.

    Article  PubMed  Google Scholar 

  4. Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol. 2004;3:169–178.

    Article  CAS  PubMed  Google Scholar 

  5. Lustman PJ, Griffith LS, Clouse RE, Cryer PE. Psychiatric illness in diabetes mellitus. Relationship to symptoms and glucose control. J Nerv Ment Dis. 1986;174:736–742.

    Article  CAS  PubMed  Google Scholar 

  6. Rasgon N, Jarvik L. Insulin resistance, affective disorders, and Alzheimer’s disease: review and hypothesis. J Gerontol A Biol Sci Med Sci. 2004;59:178–183.

    PubMed  Google Scholar 

  7. McEwen BS. Mood disorders and allostatic load. Biol Psychiatry. 2003;54:200–207.

    Article  PubMed  Google Scholar 

  8. McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999;22:105–122.

    Article  CAS  PubMed  Google Scholar 

  9. Konarski JZ, McIntyre RS, Kennedy SH, Rafi-Tari S, Soczynska JK, Ketter TA. Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord. 2008;10:1–37.

    Article  PubMed  Google Scholar 

  10. Rasgon NL, Kenna HA. Insulin resistance in depressive disorders and Alzheimer’s disease: revisiting the missing link hypothesis. Neurobiol Aging. 2005;26(suppl. 1):103–107.

    Article  PubMed  CAS  Google Scholar 

  11. Soininen H, Puranen M, Helkala EL, Laakso M, Riekkinen PJ. Diabetes mellitus and brain atrophy: a computed tomography study in an elderly population. Neurobiol Aging. 1992;13:717–721.

    Article  CAS  PubMed  Google Scholar 

  12. Araki Y, Nomura M, Tanaka H, et al. MRI of the brain in diabetes mellitus. Neuroradiology. 1994;36:101–103.

    Article  CAS  PubMed  Google Scholar 

  13. Convit A, De Leon MJ, Tarshish C, et al. Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiol Aging. 1997;18:131–138.

    Article  CAS  PubMed  Google Scholar 

  14. Perros P, Deary IJ, Sellar RJ, Best JJ, Frier BM. Brain abnormalities demonstrated by magnetic resonance imaging in adult IDDM patients with and without a history of recurrent severe hypoglycemia. Diabetes Care. 1997;20:1013–1018.

    Article  CAS  PubMed  Google Scholar 

  15. den Heijer T, Vermeer SE, van Dijk EJ, et al. Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia. 2003;46:1604–1610.

    Article  Google Scholar 

  16. Ferguson SC, Blane A, Perros P, et al. Cognitive ability and brain structure in type 1 diabetes: relation to microangiopathy and preceding severe hypoglycemia. Diabetes. 2003;52:149–156.

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson SC, Blane A, Wardlaw J, et al. Influence of an early-onset age of type 1 diabetes on cerebral structure and cognitive function. Diabetes Care. 2005;28:1431–1437.

    Article  PubMed  Google Scholar 

  18. Lobnig BM, Kromeke O, Optenhostert-Porst C, Wolf OT. Hippocampal volume and cognitive performance in long-standing type 1 diabetic patients without macrovascular complications. Diabet Med. 2006;23:32–39.

    Article  CAS  PubMed  Google Scholar 

  19. Musen G, Lyoo IK, Sparks CR, et al. Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes. 2006;55:326–333.

    Article  CAS  PubMed  Google Scholar 

  20. Wessels AM, Simsek S, Remijnse PL, et al. Voxel-based morphometry demonstrates reduced grey matter density on brain MRI in patients with diabetic retinopathy. Diabetologia. 2006;49:2474–2480.

    Article  CAS  PubMed  Google Scholar 

  21. Wessels AM, Rombouts SA, Remijnse PL, et al. Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume. Diabetologia. 2007;50:1763–1769.

    Article  CAS  PubMed  Google Scholar 

  22. Perantie DC, Wu J, Koller JM, et al. Regional brain volume differences associated with hyperglycemia and severe hypoglycemia in youth with type 1 diabetes. Diabetes Care. 2007;30:2331–2337.

    Article  PubMed  Google Scholar 

  23. Jongen C, van der GJ, Kappelle LJ, Biessels GJ, Viergever MA, Pluim JP. Automated measurement of brain and white matter lesion volume in type 2 diabetes mellitus. Diabetologia. 2007;50:1509–1516.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar R, Anstey KJ, Cherbuin N, Wen W, Sachdev PS. Association of type 2 diabetes with depression, brain atrophy, and reduced fine motor speed in a 60- to 64-year-old community sample. Am J Geriatr Psychiatry. 2008;16:989–998.

    Article  PubMed  Google Scholar 

  25. Kodl CT, Franc DT, Rao JP, et al. Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function. Diabetes. 2008;57:3083–3089.

    Article  CAS  PubMed  Google Scholar 

  26. Haroon E, Watari K, Thomas A, et al. Prefrontal myo-inositol concentration and visuospatial functioning among diabetic depressed patients. Psychiatry Res. 2009;171:10–19.

    Article  CAS  PubMed  Google Scholar 

  27. Northam EA, Rankins D, Lin A, et al. Central nervous system function in youth with type 1 diabetes 12 years after disease onset. Diabetes Care. 2009;32:445–450.

    Article  PubMed  Google Scholar 

  28. Auer RN, Siesjo BK. Hypoglycaemia: brain neurochemistry and neuropathology. Baillieres Clin Endocrinol Metab. 1993;7:611–625.

    Article  CAS  PubMed  Google Scholar 

  29. Deary IJ, Crawford JR, Hepburn DA, Langan SJ, Blackmore LM, Frier BM. Severe hypoglycemia and intelligence in adult patients with insulin-treated diabetes. Diabetes. 1993;42:341–344.

    Article  CAS  PubMed  Google Scholar 

  30. Vitek MP, Bhattacharya K, Glendening JM, et al. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci U S A. 1994;91:4766–4770.

    Article  CAS  PubMed  Google Scholar 

  31. van der Heide LP, Ramakers GM, Smidt MP. Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol. 2006;79:205–221.

    Article  PubMed  CAS  Google Scholar 

  32. Sonntag WE, Ramsey M, Carter CS. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res Rev. 2005;4:195–212.

    Article  CAS  PubMed  Google Scholar 

  33. Fernandez S, Fernandez AM, Lopez-Lopez C, Torres-Aleman I. Emerging roles of insulin-like growth factor-I in the adult brain. Growth Horm IGF Res. 2007;17:89–95.

    Article  CAS  PubMed  Google Scholar 

  34. Musselman DL, Betan E, Larsen H, Phillips LS. Relationship of depression to diabetes types 1 and 2: epidemiology, biology, and treatment. Biol Psychiatry. 2003;54:317–329.

    Article  PubMed  Google Scholar 

  35. Capuron L, Miller AH. Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry. 2004;56:819–824.

    Article  CAS  PubMed  Google Scholar 

  36. Paris D, Town T, Parker T, Humphrey J, Mullan M. beta-Amyloid vasoactivity and proinflammation in microglia can be blocked by cGMP-elevating agents. Ann N Y Acad Sci. 2000;903:446–450.

    Article  CAS  PubMed  Google Scholar 

  37. Rosenberg PB. Clinical aspects of inflammation in Alzheimer’s disease. Int Rev Psychiatry. 2005;17:503–514.

    Article  PubMed  Google Scholar 

  38. Laws SM, Perneczky R, Wagenpfeil S, et al. TNF polymorphisms in Alzheimer disease and functional implications on CSF beta-amyloid levels. Hum Mutat. 2005;26:29–35.

    Article  CAS  PubMed  Google Scholar 

  39. Tobinick E, Gross H, Weinberger A, Cohen H. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed. 2006;8:25.

    PubMed  Google Scholar 

  40. Collino M, Aragno M, Mastrocola R, et al. Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol. 2006;530:70–80.

    Article  CAS  PubMed  Google Scholar 

  41. Lopes JP, Oliveira SM, Soares FJ. [Oxidative stress and its effects on insulin resistance and pancreatic beta-cells dysfunction: relationship with type 2 diabetes mellitus complications]. Acta Med Port. 2008;21:293–302. Article in Portuguese.

    CAS  PubMed  Google Scholar 

  42. Rush AJ, Giles DE, Schlesser MA, et al. The dexamethasone suppression test in patients with mood disorders. J Clin Psychiatry. 1996;57:470–484.

    CAS  PubMed  Google Scholar 

  43. McEwen BS, Magarinos AM, Reagan LP. Studies of hormone action in the hippocampal formation: possible relevance to depression and diabetes. J Psychosom Res. 2002;53:883–890.

    Article  PubMed  Google Scholar 

  44. Wrighten SA, Piroli GG, Grillo CA, Reagan LP. A look inside the diabetic brain: Contributors to diabetes-induced brain aging. Biochim Biophys Acta. 2009;1792:444–453.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger S. McIntyre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIntyre, R.S., Kenna, H.A., Nguyen, H.T. et al. Brain volume abnormalities and neurocognitive deficits in diabetes mellitus: Points of pathophysiological commonality with mood disorders?. Adv Therapy 27, 63–80 (2010). https://doi.org/10.1007/s12325-010-0011-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-010-0011-z

Keywords

Navigation