Skip to main content

Advertisement

Log in

Classic “PCH” Genes are a Rare Cause of Radiologic Pontocerebellar Hypoplasia

  • RESEARCH
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The term Pontocerebellar Hypoplasia (PCH) was initially used to designate a heterogeneous group of fetal-onset genetic neurodegenerative disorders. As a descriptive term, PCH refers to pons and cerebellum of reduced volume. In addition to the classic PCH types described in OMIM, many other disorders can result in a similar imaging appearance. This study aims to review imaging, clinical and genetic features and underlying etiologies of a cohort of children with PCH on imaging. We systematically reviewed brain images and clinical charts of 38 patients with radiologic evidence of PCH. Our cohort included 21 males and 17 females, with ages ranging between 8 days to 15 years. All individuals had pons and cerebellar vermis hypoplasia, and 63% had cerebellar hemisphere hypoplasia. Supratentorial anomalies were found in 71%. An underlying etiology was identified in 68% and included chromosomal (21%), monogenic (34%) and acquired (13%) causes. Only one patient had pathogenic variants in an OMIM listed PCH gene. Outcomes were poor regardless of etiology, though no one had regression. Approximately one third of patients deceased at a median age of 8 months. All individuals had global developmental delay, 50% were non-verbal, 64% were non-ambulatory and 45% required gastrostomy feeding. This cohort demonstrates that radiologic PCH has heterogenous etiologies and the “classic” OMIM-listed PCH genes underlie only a minority of cases. Broad genetic testing, including chromosomal microarray and exome or multigene panels, is recommended in individuals with PCH-like imaging appearance. Our results strongly suggest that the term PCH should be used to designate radiologic findings, and not to imply neurogenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing on request from authors.

References

  1. Barth PG, Vrensen GF, Uylings HB, Oorthuys JW, Stam FC. Inherited syndrome of microcephaly, dyskinesia and pontocerebellar hypoplasia: a systemic atrophy with early onset. J Neurol Sci. 1990;97:25–42.

    Article  CAS  PubMed  Google Scholar 

  2. Barth PG. Pontocerebellar hypoplasias. An overview of a group of inherited neurodegenerative disorders with fetal onset. Brain Dev. 1993;15:411–22.

    Article  CAS  PubMed  Google Scholar 

  3. Coolen M, Altin N, Rajamani K, Pereira E, Siquier-Pernet K, Puig Lombardi E, et al. Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with cerebellar hypoplasia and disrupt Purkinje cell differentiation. Am J Hum Genet. 2022;109:909–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doherty D, Millen KJ, Barkovich AJ. Midbrain and hindbrain malformations: advances in clinical diagnosis, imaging, and genetics. Lancet Neurol. 2013;12:381–93.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Severino M, Huisman TAGM. Posterior Fossa Malformations. Neuroimaging Clin N Am. 2019;29:367–83.

    Article  PubMed  Google Scholar 

  6. Rüsch CT, Bölsterli BK, Kottke R, Steinfeld R, Boltshauser E. Pontocerebellar Hypoplasia: a Pattern Recognition Approach. Cerebellum Lond Engl. 2020;19:569–82.

    Article  Google Scholar 

  7. Scola E, Ganau M, Robinson R, Cleary M, De Cocker LJL, Mankad K, et al. Neuroradiological findings in three cases of pontocerebellar hypoplasia type 9 due to AMPD2 mutation: typical MRI appearances and pearls for differential diagnosis. Quant Imaging Med Surg. 2019;9:1966–72.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bosemani T, Orman G, Boltshauser E, Tekes A, Huisman TAGM, Poretti A. Congenital abnormalities of the posterior fossa. Radiogr Rev Publ Radiol Soc N Am Inc. 2015;35:200–20.

    Google Scholar 

  9. Zafeiriou DI, Ververi A, Anastasiou A, Soubasi V, Vargiami E. Pontocerebellar hypoplasia in extreme prematurity: clinical and neuroimaging findings. Pediatr Neurol. 2013;48:48–51.

    Article  PubMed  Google Scholar 

  10. Jandeaux C, Kuchcinski G, Ternynck C, Riquet A, Leclerc X, Pruvo J-P, et al. Biometry of the Cerebellar Vermis and Brain Stem in Children: MR Imaging Reference Data from Measurements in 718 Children. AJNR Am J Neuroradiol. 2019;40:1835–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sener RN. Cerebellar agenesis versus vanishing cerebellum in Chiari II malformation. Comput Med Imaging Graph Off J Comput Med Imaging Soc. 1995;19:491–4.

    Article  CAS  Google Scholar 

  12. Boltshauser E, Schneider J, Kollias S, Waibel P, Weissert M. Vanishing cerebellum in myelomeningocoele. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2002;6:109–13.

    Article  Google Scholar 

  13. Chidambaranathan N, Reddy S. Chiari malformation type II with vanishing cerebellum. Indian Pediatr. 2006;43:920–2.

    CAS  PubMed  Google Scholar 

  14. Accogli A, Russell L, Sébire G, Rivière J-B, St-Onge J, Addour-Boudrahem N, et al. Pathogenic variants in AIMP1 cause pontocerebellar hypoplasia. Neurogenetics. 2019;20:103–8.

    Article  CAS  PubMed  Google Scholar 

  15. Yigazu P, Kalra V, Altinok D. Brainstem disconnection in a late preterm neonate with classic features of fetal alcohol syndrome. Pediatr Neurol. 2014;51:745–6.

    Article  PubMed  Google Scholar 

  16. Duffield C, Jocson J, Wootton-Gorges SL. Brainstem disconnection. Pediatr Radiol. 2009;39:1357–60.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marin-Valencia I, Gerondopoulos A, Zaki MS, Ben-Omran T, Almureikhi M, Demir E, et al. Homozygous Mutations in TBC1D23 Lead to a Non-degenerative Form of Pontocerebellar Hypoplasia. Am J Hum Genet. 2017;101:441–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mochida GH, Ganesh VS, de Michelena MI, Dias H, Atabay KD, Kathrein KL, et al. CHMP1A encodes an essential regulator of BMI1-INK4A in cerebellar development. Nat Genet. 2012;44:1260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Budde BS, Namavar Y, Barth PG, Poll-The BT, Nürnberg G, Becker C, et al. tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat Genet. 2008;40:1113–8.

    Article  CAS  PubMed  Google Scholar 

  20. Cassandrini D, Biancheri R, Tessa A, Di Rocco M, Di Capua M, Bruno C, et al. Pontocerebellar hypoplasia: clinical, pathologic, and genetic studies. Neurology. 2010;75:1459–64.

    Article  CAS  PubMed  Google Scholar 

  21. Namavar Y, Barth PG, Kasher PR, van Ruissen F, Brockmann K, Bernert G, et al. Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain J Neurol. 2011;134:143–56.

    Article  Google Scholar 

  22. Passemard S, Titomanlio L, Elmaleh M, Afenjar A, Alessandri J-L, Andria G, et al. Expanding the clinical and neuroradiologic phenotype of primary microcephaly due to ASPM mutations. Neurology. 2009;73:962–9.

    Article  CAS  PubMed  Google Scholar 

  23. Del Giudice E, Macca M, Imperati F, D’Amico A, Parent P, Pasquier L, et al. CNS involvement in OFD1 syndrome: a clinical, molecular, and neuroimaging study. Orphanet J Rare Dis. 2014;9:74.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Accogli A, Guerrero K, D’Agostino MD, Tran L, Cieuta-Walti C, Thiffault I, et al. Biallelic Loss-of-Function Variants in AIMP1 Cause a Rare Neurodegenerative Disease. J Child Neurol. 2019;34:74–80.

    Article  PubMed  Google Scholar 

  25. Gómez-Santos E, Lloreda-García JM, Fernández-Fructuoso JR, Martínez-Ferrández C, Leante-Castellanos JL, Fuentes-Gutiérrez C. Neonatal Marshall-Smith syndrome. Clin Dysmorphol. 2014;23:42–4.

    Article  PubMed  Google Scholar 

  26. Travan L, Oretti C, Zennaro F, Demarini S. Marshall-Smith syndrome and septo-optic dysplasia: an unreported association. Am J Med Genet A. 2008;146A:2138–40.

    Article  PubMed  Google Scholar 

  27. Summers DA, Cooper HA, Butler MG. Marshall-Smith syndrome: case report of a newborn male and review of the literature. Clin Dysmorphol. 1999;8:207–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nowaczyk MJM, Irons MB. Smith-Lemli-Opitz syndrome: phenotype, natural history, and epidemiology. Am J Med Genet C Semin Med Genet. 2012;160C:250–62.

    Article  PubMed  Google Scholar 

  29. Lee RWY, Conley SK, Gropman A, Porter FD, Baker EH. Brain magnetic resonance imaging findings in Smith-Lemli-Opitz syndrome. Am J Med Genet A. 2013;161A:2407–19.

    Article  PubMed  Google Scholar 

  30. Inagaki M, Ando Y, Mito T, Ieshima A, Ohtani K, Takashima S, et al. Comparison of brain imaging and neuropathology in cases of trisomy 18 and 13. Neuroradiology. 1987;29:474–9.

    Article  CAS  PubMed  Google Scholar 

  31. Pinter JD, Eliez S, Schmitt JE, Capone GT, Reiss AL. Neuroanatomy of Down’s syndrome: a high-resolution MRI study. Am J Psychiatry. 2001;158:1659–65.

    Article  CAS  PubMed  Google Scholar 

  32. Erenel H, Madazli R. Pons Anteroposterior and Cerebellar Vermis Craniocaudal Diameters in Fetuses With Down Syndrome. J Ultrasound Med Off J Am Inst Ultrasound Med. 2021;40:123–8.

    Google Scholar 

  33. Tamraz J, Rethoré MO, Lejeune J, Outin C, Goepel R, Stievenart JL, et al. Brain morphometry using MRI in Cri-du-Chat Syndrome. Report of seven cases with review of the literature. Ann Genet. 1993;36:75–87.

    CAS  PubMed  Google Scholar 

  34. Pejcic L, Stankovic T, Ratkovic-Jankovic M, Vasic K, Nikolic I. Clinical manifestations in trisomy 9 mosaicism. Turk J Pediatr. 2018;60:729–34.

    Article  PubMed  Google Scholar 

  35. Messerschmidt A, Brugger PC, Boltshauser E, Zoder G, Sterniste W, Birnbacher R, et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol. 2005;26:1659–67.

    PubMed  PubMed Central  Google Scholar 

  36. Johnsen SD, Bodensteiner JB, Lotze TE. Frequency and nature of cerebellar injury in the extremely premature survivor with cerebral palsy. J Child Neurol. 2005;20:60–4.

    Article  PubMed  Google Scholar 

  37. Bilge S, Mert GG, Hergüner Ö, Özcanyüz D, Bozdoğan ST, Kaya Ö, et al. Clinical, radiological, and genetic variation in pontocerebellar hypoplasia disorder and our clinical experience. Ital J Pediatr. 2022;48:169.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nuovo S, Micalizzi A, Romaniello R, Arrigoni F, Ginevrino M, Casella A, et al. Refining the mutational spectrum and gene-phenotype correlates in pontocerebellar hypoplasia: results of a multicentric study. J Med Genet. 2022;59:399–409.

    Article  CAS  PubMed  Google Scholar 

  39. Valence S, Garel C, Barth M, Toutain A, Paris C, Amsallem D, et al. RELN and VLDLR mutations underlie two distinguishable clinico-radiological phenotypes. Clin Genet. 2016;90:545–9.

    Article  CAS  PubMed  Google Scholar 

  40. Cotes C, Bonfante E, Lazor J, Jadhav S, Caldas M, Swischuk L, et al. Congenital basis of posterior fossa anomalies. Neuroradiol J. 2015;28:238–53.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Takanashi J, Arai H, Nabatame S, Hirai S, Hayashi S, Inazawa J, et al. Neuroradiologic features of CASK mutations. AJNR Am J Neuroradiol. 2010;31:1619–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hayashi S, Uehara DT, Tanimoto K, Mizuno S, Chinen Y, Fukumura S, et al. Comprehensive investigation of CASK mutations and other genetic etiologies in 41 patients with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH). PLoS ONE. 2017;12:e0181791.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M Srour holds a salary award from the Fonds de Recherche de Santé Quebec.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Myriam Srour, Rohaya Zakaria. First draft of the manuscript: Rohaya Zakaria and Maisa Malta. Data collection: Rohaya Zakaria, Maisa Malta, Felixe Pelletier. Imaging review: Christine Saint-Martin. Supervision: Myriam Srour, Elana Pinchefsky. All authors contributed to critical feedback, revision, and final approval of the manuscript.

Corresponding author

Correspondence to Myriam Srour.

Ethics declarations

Ethical Approval

This study was approved by our institutional research ethics boards (McGill University Health Center MP-2021–6580; Centre Hospitalier Universitaire Sainte Justine MEO-37–2021-2915). Our REB waived the requirement for signed patient consent as the study does not include any identifiable images or information.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rohaya Binti Mohamad Zakaria and Maisa Malta have equal contribution as co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaria, R.B.M., Malta, M., Pelletier, F. et al. Classic “PCH” Genes are a Rare Cause of Radiologic Pontocerebellar Hypoplasia. Cerebellum 23, 418–430 (2024). https://doi.org/10.1007/s12311-023-01544-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-023-01544-2

Keywords

Navigation