Skip to main content
Log in

Out with the Old and in with the New: the Contribution of Prefrontal and Cerebellar Areas to Backward Inhibition

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The inhibitory mechanism named backward inhibition (BI) counteracts interference of previous tasks supporting task switching. For instance, if task set A is inhibited when switching to task B, then it should take longer to immediately return to task set A (as occurring in an ABA sequence), as compared to a task set that has not been just inhibited (as occurring in a CBA sequence), because extra time will be needed to overcome the inhibition of task set A.

The evidenced prefrontal and cerebellar role in inhibitory control suggests their involvement even in BI. Here, for the first time, we modulated the excitability of multiple brain sites (right presupplementary motor area (pre-SMA), left and right cerebellar hemispheres) through continuous theta burst stimulation (cTBS) in a valuable sham-controlled order-balanced within-subject experimental design in healthy individuals performing two domain-selective (verbal and spatial) task-switching paradigms. Verbal BI was abolished by prefrontal or cerebellar stimulations through opposite alterations of the basal pattern: cTBS on pre-SMA increased CBA reaction times, disclosing the current prefrontal inhibition of any interfering old task. Conversely, cerebellar cTBS decreased ABA reaction times, disclosing the current cerebellar recognition of sequences in which it is necessary to overcome previously inhibited events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kiesel A, Steinhauser M, Wendt M, Falkenstein M, Jost K, Philipp AM, et al. Control and interference in task switching—a review. Psychol Bull. 2010;136:849–74.

    Article  PubMed  Google Scholar 

  2. Mayr U, Keele SW. Changing internal constraints on action: the role of backward inhibition. J Exp Psychol Gen. 2000;129:4–26.

    Article  CAS  PubMed  Google Scholar 

  3. Mayr U. Inhibition of action rules. Psychon Bull Rev. 2002;9:93–9.

    Article  PubMed  Google Scholar 

  4. Schuch S, Sommer A, Lukas S. Action control in task switching: do action effects modulate N - 2 repetition costs in task switching? Psychol Res. 2018;82:146–56.

    Article  PubMed  Google Scholar 

  5. Obeso I, Cho SS, Antonelli F, Houle S, Jahanshahi M, Ko JH, et al. Stimulation of the pre-SMA influences cerebral blood flow in frontal areas involved with inhibitory control of action. Brain Stimul. 2013a;6:769–76.

    Article  CAS  PubMed  Google Scholar 

  6. Obeso I, Robles N, Marrón EM, Redolar-Ripoll D. Dissociating the role of the pre-SMA in response inhibition and switching: a combined online and offline TMS approach. Front Hum Neurosci. 2013b;7:150.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rushworth MF, Hadland KA, Paus T, Sipila PK. Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J Neurophysiol. 2002;87:2577–92.

    Article  CAS  PubMed  Google Scholar 

  8. Shi Y, Meindl T, Szameitat AJ, Müller HJ, Schubert T. Task preparation and neural activation in stimulus–specific brain regions: an fMRI study with the cued task–switching paradigm. Brain Cogn. 2014;87:39–51.

    Article  PubMed  Google Scholar 

  9. Yin S, Wang T, Pan W, Liu Y, Chen A. Task–switching cost and intrinsic functional connectivity in the human brain: toward understanding individual differences in cognitive flexibility. PLoS One. 2015;10:e0145826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack R. Triangulating a cognitive control network using diffusion–weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci. 2007;27:3743–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boehler CN, Appelbaum LG, Krebs RM, Hopf JM, Woldorff MG. Pinning down response inhibition in the brain––conjunction analyses of the stop–signal task. Neuroimage. 2010;52:1621–32.

    Article  CAS  PubMed  Google Scholar 

  12. JRR D, Ide JS, Luo X, CSR L. Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. J Neurosci. 2009;29:10171–9.

    Article  CAS  Google Scholar 

  13. Sharp DJ, Bonnelle V, De Boissezon X, Beckmann CF, James SG, Patel MC, et al. Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc Natl Acad Sci U S A. 2010;107:6106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chikazoe J, Jimura K, Asari T, Yamashita K, Morimoto H, Hirose S, et al. Functional dissociation in right inferior frontal cortex during performance of go/no–go task. Cereb Cortex. 2009a;19:146–52.

    Article  PubMed  Google Scholar 

  15. Chikazoe J, Jimura K, Hirose S, Yamashita K, Miyashita Y, Konishi S. Preparation to inhibit a response complements response inhibition during performance of a stop–signal task. J Neurosci. 2009b;29:15870–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jahfari S, Stinear CM, Claffey M, Verbruggen F, Aron AR. Responding with restraint: what are the neurocognitive mechanisms? J Cogn Neurosci. 2010;22:1479–92.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sebastian A, Forstmann BU, Matzke D. Towards a model–based cognitive neuroscience of stopping—a neuroimaging perspective. Neurosci Biobehav Rev. 2018;90:130–6.

    Article  PubMed  Google Scholar 

  18. Cai W, George JS, Verbruggen F, Chambers CD, Aron AR. The role of the right presupplementary motor area in stopping action: two studies with event–related transcranial magnetic stimulation. J Neurophysiol. 2012;108:380–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen CY, Muggleton NG, Tzeng OJ, Hung DL, Juan CH. Control of prepotent responses by the superior medial frontal cortex. Neuroimage. 2009;44:537–45.

    Article  PubMed  Google Scholar 

  20. Neubert FX, Mars RB, Buch ER, Olivier E, Rushworth MF. Cortical and subcortical interactions during action reprogramming and their related white matter pathways. Proc Natl Acad Sci U S A. 2010;107:13240–5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mayr U, Diedrichsen J, Ivry R, Keele SW. Dissociating task–set selection from task–set inhibition in the prefrontal cortex. J Cogn Neurosci. 2006;18:14–21.

    Article  PubMed  Google Scholar 

  22. Whitmer AJ, Banich MT. Brain activity related to the ability to inhibit previous task sets: an fMRI study. Cogn Affect Behav Neurosci. 2012;12:661–70.

    Article  PubMed  Google Scholar 

  23. Picazio S, Koch G. Is motor inhibition mediated by cerebello–cortical interactions? Cerebellum. 2015;14:47–9.

    Article  PubMed  Google Scholar 

  24. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134:3672–86.

    Article  PubMed  Google Scholar 

  25. Barbas H, García-Cabezas MÁ. How the prefrontal executive got its stripes. Curr Opin Neurobiol. 2016;40:125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19:338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Picazio S, Ponzo V, Koch G. Cerebellar control on prefrontal-motor connectivity during movement inhibition. Cerebellum. 2016;15:680–7.

    Article  PubMed  Google Scholar 

  28. Koziol LF, Budding D, Andreasen N, D'Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Berger A, Sadeh M, Tzur G, Shuper A, Kornreich L, Inbar D, et al. Task switching after cerebellar damage. Neuropsychology. 2005;19:362–70.

    Article  PubMed  Google Scholar 

  30. Bischoff GA, Ivry RB, Grafton ST. Cerebellar involvement in response reassignment rather than attention. J Neurosci. 2002;22:546–53.

    Article  Google Scholar 

  31. Dreher JC, Koechlin E, Ali SO, Grafman J. The roles of timing and task order during task switching. Neuroimage. 2002;17:95–109.

    Article  PubMed  Google Scholar 

  32. Peterburs J, Hofmann D, Becker MPI, Nitsch AM, Miltner WHR, Straube T. The role of the cerebellum for feedback processing and behavioral switching in a reversal–learning task. Brain Cogn. 2018;125:142–8.

    Article  PubMed  Google Scholar 

  33. Mauk MD, Medina JF, Nores WL, Ohyama T. Cerebellar function: coordination, learning or timing? Curr Biol. 2000;10:522–5.

    Article  Google Scholar 

  34. Peterburs J, Blevins LC, Sheu YS, Desmond JE. Cerebellar contributions to sequence prediction in verbal working memory. Brain Struct Funct. 2019;224:485–99.

    Article  PubMed  Google Scholar 

  35. O'Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28:2252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Molinari M, Petrosini L. Is sequence-in/sequence-out a cerebellar mode of operation in cognition too? Behav Brain Sci. 1997;20:259–60.

    Article  Google Scholar 

  37. Leggio M, Molinari M. Cerebellar sequencing: a trick for predicting the future. Cerebellum. 2015;14:35–8.

    Article  CAS  PubMed  Google Scholar 

  38. Mandolesi L, Foti F, Cutuli D, Laricchiuta D, Gelfo F, De Bartolo P, et al. Features of sequential learning in hemicerebellectomized rats. J Neurosci Res. 2010;88:478–86.

    CAS  PubMed  Google Scholar 

  39. Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, et al. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120:1753–62.

    Article  PubMed  Google Scholar 

  40. Restuccia D, Della Marca G, Valeriani M, Leggio MG, Molinari M. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch–negativity study. Brain. 2007;130:276–87.

    Article  PubMed  Google Scholar 

  41. De Bartolo P, Mandolesi L, Federico F, Foti F, Cutuli D, Gelfo F, et al. Cerebellar involvement in cognitive flexibility. Neurobiol Learn Mem. 2009;92:310–7.

    Article  PubMed  Google Scholar 

  42. Foti F, Sdoia S, Menghini D, Vicari S, Petrosini L, Ferlazzo F. Out with the old and in with the new––is backward inhibition a domain–specific process? PLoS One. 2015a;10:e0142613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Foti F, Sdoia S, Menghini D, Mandolesi L, Vicari S, Ferlazzo F, et al. Are the deficits in navigational abilities present in the Williams syndrome related to deficits in the backward inhibition? Front Psychol. 2015b;18(6):287.

    Google Scholar 

  44. Palladino P, Mammarella N, Vecchi T. Modality–specific effects in inhibitory mechanisms: the interaction of peripheral and central components in working memory. Brain Cogn. 2003;53:263–7.

    Article  PubMed  Google Scholar 

  45. Akçay Ç, Hazeltine E. Domain–specific conflict adaptation without feature repetitions. Psychon Bull Rev. 2011;18:505–11.

    Article  PubMed  Google Scholar 

  46. Egner T. Multiple conflict-driven control mechanisms in the human brain. Trends Cogn Sci. 2008;12:374–80.

    Article  PubMed  Google Scholar 

  47. Lin SH, Yeh YY. Domain–specific control of selective attention. PLoS One. 2014;9:e98260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Stoppel CM, Boehler CN, Strumpf H, Krebs RM, Heinze HJ, Hopf JM, et al. Distinct representations of attentional control during voluntary and stimulus–driven shifts across objects and locations. Cereb Cortex. 2013;23:1351–61.

    Article  PubMed  Google Scholar 

  49. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.

    Article  CAS  PubMed  Google Scholar 

  50. Nachev P, Kennard C, Husain M. Functional role of the supplementary and pre–supplementary motor areas. Nat Rev Neurosci. 2008;9:856–69.

    Article  CAS  PubMed  Google Scholar 

  51. Del Olmo MF, Cheeran B, Koch G, Rothwell JC. Role of the cerebellum in externally paced rhythmic finger movements. J Neurophysiol. 2007;98:145–52.

    Article  PubMed  Google Scholar 

  52. Koch G, Mori F, Marconi B, Codecà C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol. 2008;119:2559–69.

    Article  PubMed  Google Scholar 

  53. Casula EP, Pellicciari MC, Ponzo V, Stampanoni Bassi M, Veniero D, Caltagirone C, et al. Cerebellar theta burst stimulation modulates the neural activity of interconnected parietal and motor areas. Sci Rep. 2016;31:36191.

    Article  CAS  Google Scholar 

  54. Richard A, Van Hamme A, Drevelle X, Golmard JL, Meunier S, Welter ML. Contribution of the supplementary motor area and the cerebellum to the anticipatory postural adjustments and execution phases of human gait initiation. Neuroscience. 2017;358:181–9.

    Article  CAS  PubMed  Google Scholar 

  55. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–6.

    Article  CAS  PubMed  Google Scholar 

  56. Rothwell JC. Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods. 1997;74:113–22.

    Article  CAS  PubMed  Google Scholar 

  57. Mantovani A, Simpson HB, Fallon BA, Rossi S, Lisanby SH. Randomized sham–controlled trial of repetitive transcranial magnetic stimulation intreatment–resistant obsessive–compulsive disorder. Int J Neuropsychopharmacol. 2010;13:217–27.

    Article  PubMed  Google Scholar 

  58. Ruitenberg MF, Verwey WB, Schutter DJ, Abrahamse EL. Cognitive and neural foundations of discrete sequence skill: a TMS study. Neuropsychologia. 2014;56:229–38.

    Article  PubMed  Google Scholar 

  59. Picazio S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Cerebellar contribution to mental rotation: a cTBS study. Cerebellum. 2013a;12:856–61.

    Article  PubMed  Google Scholar 

  60. Picazio S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Continuous theta burst stimulation (cTBS) on left cerebellar hemisphere affects mental rotation tasks during music listening. PLoS One. 2013b;8:e64640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koch G, Brusa L, Carrillo F, Lo Gerfo E, Torriero S, Oliveri M, et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology. 2009;73:113–9.

    Article  CAS  PubMed  Google Scholar 

  62. Meiran N, Gotler A, Perlman A. Old age is associated with a pattern of relatively intact and relatively impaired task-set switching abilities. J Gerontol B Psychol Sci Soc Sci. 2001;56:88–102.

    Article  Google Scholar 

  63. Duque J, Olivier E, Rushworth M. Top down inhibitory control exerted by the medial frontal cortex during action selection under conflict. J Cogn Neurosci. 2013;25:1634–48.

    Article  PubMed  Google Scholar 

  64. Levy BJ, Wagner AD. Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci. 2011;1224:40–62.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Swick D, Ashley V, Turken U. Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. Neuroimage. 2011;56:1655–65.

    Article  PubMed  Google Scholar 

  66. Xu B, Sandrini M, Wang WT, Smith JF, Sarlls JE, Awosika O, et al. Pre-SMA stimulation changes task–free functional connectivity in the fronto–basal ganglia that correlates with response inhibition efficiency. Hum Brain Mapp. 2016;37:3236–49.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci. 2004;8:170–7.

    Article  PubMed  Google Scholar 

  68. Nee DE, Wager TD, Jonides J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci. 2007;7:1–17.

    Article  PubMed  Google Scholar 

  69. Stuphorn V, Schall JD. Executive control of countermanding saccades by the supplementary eye field. Nat Neurosci. 2006;9:925–31.

    Article  CAS  PubMed  Google Scholar 

  70. Chikazoe J, Konishi S, Asari T, Jimura K, Miyashita Y. Activation of right inferior frontal gyrus during response inhibition across response modalities. J Cogn Neurosci. 2007;19:69–80.

    Article  PubMed  Google Scholar 

  71. Isoda M, Hikosaka O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci. 2007;10:240–8.

    Article  CAS  PubMed  Google Scholar 

  72. Isoda M, Hikosaka O. Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J Neurosci. 2008;28:7209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kenner NM, Mumford J, Hommer RE, Skup M, Leibenluft E, Poldrack R. Inhibitory motor control in response stopping and response switching. J Neurosci. 2010;30:8512–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chambers CD, Bellgrove MA, Gould IC, English T, Garavan H, McNaught E, et al. Dissociable mechanisms of cognitive control in prefrontal and premotor cortex. J Neurophysiol. 2007;98:3638–47.

    Article  PubMed  Google Scholar 

  75. Picazio S, Veniero D, Ponzo V, Caltagirone C, Gross J, Thut G, et al. Prefrontal control over motor cortex cycles at beta frequency during movement inhibition. Curr Biol. 2014;24:2940–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hsu TY, Tseng LY, Yu JX, Kuo WJ, Hung DL, Tzeng OJ, et al. Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. Neuroimage. 2011;56:2249–57.

    Article  PubMed  Google Scholar 

  77. Jacobson L, Javitt DC, Lavidor M. Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. J Cogn Neurosci. 2011;23:3380–7.

    Article  PubMed  Google Scholar 

  78. Dambacher F, Sack AT, Lobbestael J, Arntz A, Brugmann S, Schuhmann T. The role of right prefrontal and medial cortex in response inhibition: interfering with action restraint and action cancellation using transcranial magnetic brain stimulation. J Cogn Neurosci. 2014;26:1775–84.

    Article  PubMed  Google Scholar 

  79. Giller F, Zhang R, Roessner V, Beste C. The neurophysiological basis of developmental changes during sequential cognitive flexibility between adolescents and adults. Hum Brain Mapp. 2019;40:552–65.

    Article  PubMed  Google Scholar 

  80. Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44.

    Article  PubMed  Google Scholar 

  81. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.

    Article  CAS  PubMed  Google Scholar 

  82. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.

    Article  CAS  PubMed  Google Scholar 

  83. Bower JM. Is the cerebellum sensory for motor’s sake, or motor for sensory’s sake: the view from the whiskers of a rat? Prog Brain Res. 1997;114:463–96.

    Article  CAS  PubMed  Google Scholar 

  84. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    Article  CAS  PubMed  Google Scholar 

  85. Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.

    Article  CAS  PubMed  Google Scholar 

  86. Braitenberg V, Heck D, Sultan F. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci. 1997;20:229–45.

    Article  CAS  PubMed  Google Scholar 

  87. von der Gablentz J, Tempelmann C, Münte TF, Heldmann M. Performance monitoring and behavioral adaptation during task switching: an fMRI study. Neuroscience. 2015;285:227–35.

    Article  PubMed  CAS  Google Scholar 

  88. Thach WT. On the specific role of the cerebellum in motor learning and cognition: clues from PET activation and lesion studies in man. Behav Brain Sci. 1996;19:411–31.

    Article  Google Scholar 

  89. Thach WT. On the mechanism of cerebellar contributions to cognition. Cerebellum. 2007;6:163–7.

    Article  CAS  PubMed  Google Scholar 

  90. Steffener J, Gazes Y, Habeck C, Stern Y. The indirect effect of age group on switch costs via gray matter volume and task–related brain activity. Front Aging Neurosci. 2016;8:162.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Peterburs J, Desmond JE. The role of the human cerebellum in performance monitoring. Curr Opin Neurobiol. 2016;40:38–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schweizer TA, Alexander MP, Cusimano M, Stuss DT. Fast and efficient visuotemporal attention requires the cerebellum. Neuropsychologia. 2007;45:3068–74.

    Article  PubMed  Google Scholar 

  93. Schmahmann JD. Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci. 1998;2:362–71.

    Article  CAS  PubMed  Google Scholar 

  94. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    Article  Google Scholar 

  95. Sdoia S, Ferlazzo F. Stimulus-related inhibition of task set during task switching. Exp Psychol. 2008;55:322–7.

    Article  PubMed  Google Scholar 

  96. Meiran N. Modeling cognitive control in task–switching. Psychol Res. 2000;63:234–49.

    Article  CAS  PubMed  Google Scholar 

  97. Meiran N. Reconfiguration of processing mode prior to task performance. J Exp Psychol Learn Mem Cogn. 1996;22:1423–42.

    Article  Google Scholar 

  98. Hoffmann J, Kiesel A, Sebald A. Task switches under go/no go conditions and the decomposition of switch costs. Eur J Cogn Psychol. 2003;15:101–28.

    Article  Google Scholar 

  99. Kiesel A, Hoffmann J. Variable action effects: response control by context–specific effect anticipations. Psychol Res. 2004;68:155–62.

    Article  PubMed  Google Scholar 

  100. Koch I. Automatic and intentional activation of task sets. J Exp Psychol Learn Mem Cogn. 2001;27:1474–86.

    Article  CAS  PubMed  Google Scholar 

  101. Meiran N, Chorev Z, Sapir A. Component processes in task switching. Cogn Psychol. 2000;41:211–53.

    Article  CAS  PubMed  Google Scholar 

  102. Monsell S, Sumner P, Waters H. Task–set reconfiguration with predictable and unpredictable task switches. MemCognit. 2003;31:327–42.

    Google Scholar 

  103. Allport A, Styles EA. Hsieh S. Shifting intentional set: exploring the dynamic control of tasks. In: Umiltà C, Moscovitch M, editors. Conscious and nonconscious information processing: attention and performance XV. Cambridge: MA:MIT Press; 1994. p. 421–52.

    Google Scholar 

  104. Altmann EM. Repetition priming in task switching: do the benefits dissipate? Psychon Bull Rev. 2005;12:535–40.

    Article  PubMed  Google Scholar 

  105. Dixon PM. Bootstrap resampling. John Wiley & Sons, Ltd: Encyclopedia of environmetrics; 2006.

    Book  Google Scholar 

  106. Efron B, Tibshirani RJ. An introduction to the Bootstrap. London: Chapman & Hall/CRC; 1994.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Picazio.

Ethics declarations

All gave written informed consent for the study. The experimental procedures were approved by the Ethics Committee of the Santa Lucia Foundation IRCCS according to the Declaration of Helsinki.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picazio, S., Foti, F., Oliveri, M. et al. Out with the Old and in with the New: the Contribution of Prefrontal and Cerebellar Areas to Backward Inhibition. Cerebellum 19, 426–436 (2020). https://doi.org/10.1007/s12311-020-01115-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01115-9

Keywords

Navigation