Skip to main content

Advertisement

Log in

Oxidative Stress in Spinocerebellar Ataxia Type 7 Is Associated with Disease Severity

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 7 is a neurodegenerative inherited disease caused by a CAG expansion in the coding region of the ATXN7 gene, which results in the synthesis of polyglutamine-containing ataxin-7. Expression of mutant ataxin-7 disturbs different cell processes, including transcriptional regulation, protein conformation and clearance, autophagy, and glutamate transport; however, mechanisms underlying neurodegeneration in SCA7 are still unknown. Implication of oxidative stress in the pathogenesis of various neurodegenerative diseases, including polyglutamine disorders, has recently emerged. We perform a cross-sectional study to determine for the first time pheripheral levels of different oxidative stress markers in 29 SCA7 patients and 28 age- and sex-matched healthy subjects. Patients with SCA7 exhibit oxidative damage to lipids (high levels of lipid hydroperoxides and malondialdehyde) and proteins (elevated levels of advanced oxidation protein products and protein carbonyls). Furthermore, SCA7 patients showed enhanced activity of various anti-oxidant enzymes (glutathione reductase, glutathione peroxidase, and paraoxonase) as well as increased total anti-oxidant capacity, which suggest that activation of the antioxidant defense system might occur to counteract oxidant damage. Strikingly, we found positive correlation between some altered oxidative stress markers and disease severity, as determined by different clinical scales, with early-onset patients showing a more severe disturbance of the redox system than adult-onset patients. In summay, our results suggest that oxidative stress might contribute to SCA7 pathogenesis. Furthermore, oxidative stress biomarkers that were found relevant to SCA7 in this study could be useful to follow disease progression and monitor therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997;17(1):65–70.

    Article  PubMed  CAS  Google Scholar 

  2. David G, Durr A, Stevanin G, Cancel G, Abbas N, Benomar A, et al. Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet. 1998;7(2):165–70.

    Article  PubMed  CAS  Google Scholar 

  3. Enevoldson TP, Sanders MD, Harding AE. Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy. A clinical and genetic study of eight families. Brain. 1994;117(Pt 3):445–60.

    Article  PubMed  Google Scholar 

  4. Garden GA, La Spada AR. Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum. 2008;7(2):138–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Velazquez-Perez L, Cerecedo-Zapata CM, Hernandez-Hernandez O, Martinez-Cruz E, Tapia-Guerrero YS, Gonzalez-Pina R, et al. A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7. Neurogenetics. 2015;16(1):11–21.

    Article  PubMed  CAS  Google Scholar 

  6. Salas-Vargas J, Mancera-Gervacio J, Velazquez-Perez L, Rodrigez-Labrada R, Martinez-Cruz E, Magana JJ, et al. Spinocerebellar ataxia type 7: a neurodegenerative disorder with peripheral neuropathy. Eur Neurol. 2015;73(3–4):173–8.

    Article  PubMed  CAS  Google Scholar 

  7. David G, Giunti P, Abbas N, Coullin P, Stevanin G, Horta W, et al. The gene for autosomal dominant cerebellar ataxia type II is located in a 5-cM region in 3p12-p13: genetic and physical mapping of the SCA7 locus. Am J Hum Genet. 1996;59(6):1328–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. van de Warrenburg BP, Frenken CW, Ausems MG, Kleefstra T, Sinke RJ, Knoers NV, et al. Striking anticipation in spinocerebellar ataxia type 7: the infantile phenotype. J Neurol. 2001;248(10):911–4.

    Article  PubMed  Google Scholar 

  9. McMahon SJ, Pray-Grant MG, Schieltz D, Yates JR 3rd, Grant PA. Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proc Natl Acad Sci U S A. 2005;102(24):8478–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Palhan VB, Chen S, Peng GH, Tjernberg A, Gamper AM, Fan Y, et al. Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci U S A. 2005;102(24):8472–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yang H, Liu S, He WT, Zhao J, Jiang LL, Hu HY. Aggregation of Polyglutamine-expanded Ataxin 7 protein specifically sequesters ubiquitin-specific protease 22 and deteriorates its deubiquitinating function in the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex. J Biol Chem. 2015;290(36):21996–2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Janer A, Werner A, Takahashi-Fujigasaki J, Daret A, Fujigasaki H, Takada K, et al. SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7. Hum Mol Genet. 2010;19(1):181–95.

    Article  PubMed  CAS  Google Scholar 

  13. Cornelius N, Wardman JH, Hargreaves IP, Neergheen V, Bie AS, Tumer Z, et al. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: effect of coenzyme Q10 supplementation on these parameters. Mitochondrion. 2017;34:103–14.

    Article  PubMed  CAS  Google Scholar 

  14. Guevara-Garcia M, Gil-del Valle L, Velasquez-Perez L, Garcia-Rodriguez JC. Oxidative stress as a cofactor in spinocerebellar ataxia type 2. Redox Rep. 2012;17(2):84–9.

    Article  PubMed  CAS  Google Scholar 

  15. Klepac N, Relja M, Klepac R, Hecimovic S, Babic T, Trkulja V. Oxidative stress parameters in plasma of Huntington's disease patients, asymptomatic Huntington's disease gene carriers and healthy subjects : a cross-sectional study. J Neurol. 2007;254(12):1676–83.

    Article  PubMed  CAS  Google Scholar 

  16. Miyata R, Hayashi M, Tanuma N, Shioda K, Fukatsu R, Mizutani S. Oxidative stress in neurodegeneration in dentatorubral-pallidoluysian atrophy. J Neurol Sci. 2008;264(1–2):133–9.

    Article  PubMed  CAS  Google Scholar 

  17. Stack EC, Matson WR, Ferrante RJ. Evidence of oxidant damage in Huntington's disease: translational strategies using antioxidants. Ann N Y Acad Sci. 2008;1147:79–92.

    Article  PubMed  CAS  Google Scholar 

  18. Zhou L, Wang H, Wang P, Ren H, Chen D, Ying Z, et al. Ataxin-3 protects cells against H2O2-induced oxidative stress by enhancing the interaction between Bcl-X(L) and Bax. Neuroscience. 2013;243:14–21.

    Article  PubMed  CAS  Google Scholar 

  19. Ajayi A, Yu X, Lindberg S, Langel U, Strom AL. Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci. 2012;13:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Denny-Brown D, Dawson DM, Tyler HR. Handbook of neurological examination and case recording, vol. viii. 3rd ed. Cambridge: Harvard University Press; 1982. 87 p.

    Google Scholar 

  21. Gomez-Coello A, Valadez-Jimenez VM, Cisneros B, Carrillo-Mora P, Parra-Cardenas M, Hernandez-Hernandez O, et al. Voice Alterations in Patients With Spinocerebellar Ataxia Type 7 (SCA7): Clinical-Genetic Correlations. J Voice. 2017;31(1):123 e1–5.

    Article  Google Scholar 

  22. Magana JJ, Gomez R, Maldonado-Rodriguez M, Velazquez-Perez L, Tapia-Guerrero YS, Cortes H, et al. Origin of the spinocerebellar ataxia type 7 gene mutation in Mexican population. Cerebellum. 2013;12(6):902–5.

    Article  PubMed  CAS  Google Scholar 

  23. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.

    Article  PubMed  CAS  Google Scholar 

  24. Schmitz-Hubsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L, et al. Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology. 2008;71(13):982–9.

    Article  PubMed  CAS  Google Scholar 

  25. Klockgether T, Lüdtke R, Kramer B, Abele M, Bürk K, Schöls L, et al. The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain. 1998;Pt 4:589–600.

    Article  Google Scholar 

  26. el-Saadani M, Esterbauer H, el-Sayed M, Goher M, Nassar AY, Jurgens G. A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J Lipid Res. 1989;30(4):627–30.

    PubMed  CAS  Google Scholar 

  27. Gerard-Monnier D, Erdelmeier I, Regnard K, Moze-Henry N, Yadan JC, Chaudiere J. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol. 1998;11(10):1176–83.

    Article  PubMed  CAS  Google Scholar 

  28. Bernal A, Mendez JD, Rosado AA. Rapid colorimetric assay for dry weight. Arch Invest Med (Mex). 1981;12(1):83–8.

    CAS  Google Scholar 

  29. Hanasand M, Omdal R, Norheim KB, Goransson LG, Brede C, Jonsson G. Improved detection of advanced oxidation protein products in plasma. Clin Chim Acta. 2012;413(9–10):901–6.

    Article  PubMed  CAS  Google Scholar 

  30. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1–2):23–38.

    Article  PubMed  CAS  Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    PubMed  CAS  Google Scholar 

  32. Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J Clin Invest. 1998;101(8):1581–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Apak R, Guclu K, Ozyurek M, Karademir SE, Altun M. Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free Radic Res. 2005;39(9):949–61.

    Article  PubMed  CAS  Google Scholar 

  34. Chang KH, Chen WL, Wu YR, Lin TH, Wu YC, Chao CY, et al. Aqueous extract of Gardenia jasminoides targeting oxidative stress to reduce polyQ aggregation in cell models of spinocerebellar ataxia 3. Neuropharmacology. 2014;81:166–75.

    Article  PubMed  CAS  Google Scholar 

  35. Pacheco LS, da Silveira AF, Trott A, Houenou LJ, Algarve TD, Bello C, et al. Association between Machado-Joseph disease and oxidative stress biomarkers. Mutat Res. 2013;757(2):99–103.

    Article  PubMed  CAS  Google Scholar 

  36. Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, Cabiscol E. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med. 2008;45(5):667–78.

    Article  PubMed  CAS  Google Scholar 

  37. Borza LRA. Review on the cause-effect relationship between oxidative stress and toxic proteins in the pathogenesis of neurodegenerative diseases. Rev Med Chir Soc Med Nat Iasi. 2014;118(1):19–27.

    PubMed  Google Scholar 

  38. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative Med Cell Longev. 2017;2017:2525967.

    Google Scholar 

  39. Chen CT, Green JT, Orr SK, Bazinet RP. Regulation of brain polyunsaturated fatty acid uptake and turnover. Prostaglandins Leukot Essent Fat Acids. 2008;79(3–5):85–91.

    Article  CAS  Google Scholar 

  40. Floyd RA, Carney JM. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol. 1992;32(Suppl):S22–7.

    Article  PubMed  CAS  Google Scholar 

  41. Chondrogianni N, Stratford FL, Trougakos IP, Friguet B, Rivett AJ, Gonos ES. Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem. 2003;278(30):28026–37.

    Article  PubMed  CAS  Google Scholar 

  42. Petersen DR, Doorn JA. Reactions of 4-hydroxynonenal with proteins and cellular targets. Free Radic Biol Med. 2004;37(7):937–45.

    Article  PubMed  CAS  Google Scholar 

  43. Zarkovic N. 4-hydroxynonenal as a bioactive marker of pathophysiological processes. Mol Asp Med. 2003;24(4–5):281–91.

    Article  CAS  Google Scholar 

  44. de Assis AM, Saute JAM, Longoni A, Haas CB, Torrez VR, Brochier AW, et al. Peripheral oxidative stress biomarkers in spinocerebellar Ataxia type 3/Machado-Joseph disease. Front Neurol. 2017;8:485.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by SEP-CONACyT (grant number CB-2015-01-258043) to JJ-M. This study is dedicated to the patients and the members of SCA7-affected families. We also thank Yessica Tapia-Guerrero, Joan Jano-Ito, and César Cerecedo for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oscar Hernández-Hernández or Jonathan J. Magaña.

Ethics declarations

An informed consent form was signed by all subjects prior to examination and the research protocol was approved by the National Rehabilitation Institute (INR, Mexico City) Research and Ethical Committee.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Ramos, Y., Montoya-Estrada, A., Cisneros, B. et al. Oxidative Stress in Spinocerebellar Ataxia Type 7 Is Associated with Disease Severity. Cerebellum 17, 601–609 (2018). https://doi.org/10.1007/s12311-018-0947-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0947-0

Keywords

Navigation