Skip to main content
Log in

Cathodal Transcranial Direct Current Stimulation (tDCS) to the Right Cerebellar Hemisphere Affects Motor Adaptation During Gait

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum appears to play a key role in the development of internal rules that allow fast, predictive adjustments to novel stimuli. This is crucial for adaptive motor processes, such as those involved in walking, where cerebellar dysfunction has been found to increase variability in gait parameters. Motor adaptation is a process that results in a progressive reduction in errors as movements are adjusted to meet demands, and within the cerebellum, this seems to be localised primarily within the right hemisphere. To examine the role of the right cerebellar hemisphere in adaptive gait, cathodal transcranial direct current stimulation (tDCS) was administered to the right cerebellar hemisphere of 14 healthy adults in a randomised, double-blind, crossover study. Adaptation to a series of distinct spatial and temporal templates was assessed across tDCS condition via a pressure-sensitive gait mat (ProtoKinetics Zeno walkway), on which participants walked with an induced ‘limp’ at a non-preferred pace. Variability was assessed across key spatial-temporal gait parameters. It was hypothesised that cathodal tDCS to the right cerebellar hemisphere would disrupt adaptation to the templates, reflected in a failure to reduce variability following stimulation. In partial support, adaptation was disrupted following tDCS on one of the four spatial-temporal templates used. However, there was no evidence for general effects on either the spatial or temporal domain. This suggests, under specific conditions, a coupling of spatial and temporal processing in the right cerebellar hemisphere and highlights the potential importance of task complexity in cerebellar function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bastian AJ. Moving, sensing and learning with cerebellar damage. Curr Opin Neurobiol. 2011;21:596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schlerf JE, Galea JM, Bastian AJ, Celnik PA. Dynamic modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation. J Neurosci. 2012;32(34):11610–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reisman DS, Bastian AJ, Morton SM. Neurophysiologic and rehabilitation insights from the split-belt and other locomotor adaptation paradigms. Phys Ther. 2010;90(2):187–95.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s roles in movement and cognition. Cerebellum. 2014;13:151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, NascimentoFariasdaGuarda S, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–87.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Herzfeld DJ, Pastor D, Haith AM, Rossetti Y, Shadmehr R, O’Shea J. Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories. NeuroImage. 2014;98:147–58.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.

    Article  PubMed  Google Scholar 

  8. Priori A. Brain polarisation in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003;114(4):589–95.

    Article  PubMed  Google Scholar 

  9. Purves D, Augustine G, Fitzpatrick D. Projections to the cerebellum Neuroscience. 2nd ed. Sinauer Associates; 2001.

  10. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.

    Article  CAS  PubMed  Google Scholar 

  11. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, et al. Cerebellar transcranial direct current stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist. 2016;22(1):83–97.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hansel C, Linden DJ. Long-term depression of the cerebellar climbing fiber-Purkinje neuron synapse. Neuron. 2000;26:473–82.

    Article  CAS  PubMed  Google Scholar 

  14. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev. 2001;81(3):1143–95.

    CAS  PubMed  Google Scholar 

  15. Courchesne E, Allen G. Prediction and preparation, fundamental functions of the cerebellum. Learn Mem. 1997;4:1–35.

    Article  CAS  PubMed  Google Scholar 

  16. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.

    Article  CAS  PubMed  Google Scholar 

  17. Ramnani N, Toni I, Passingham RE, Haggard P. The cerebellum and parietal cortex play a specific role in coordination: a PET study. NeuroImage. 2001;14(4):899–911.

    Article  CAS  PubMed  Google Scholar 

  18. Schlerf J, Ivry RB, Diedrichsen J. Encoding of sensory prediction errors in the human cerebellum. J Neurosci. 2012;32(14):4913–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iadecola C, Yang G, Ebner TJ, Chen G. Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. J Neurophysiol. 1997;78:651–9.

    CAS  PubMed  Google Scholar 

  20. Galea JM, Vazquez A, Pasricha N, Orban de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21:1761–70.

    Article  PubMed  Google Scholar 

  21. Ilg W, Timmann D. Gait ataxia—specific cerebellar influences and their rehabilitation. Mov Disord. 2013;28(11):1566–75.

    Article  PubMed  Google Scholar 

  22. Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006;26(36):9107–16.

    Article  CAS  PubMed  Google Scholar 

  23. Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21:1901–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jayaram G, Tang B, Pellegadda R, Vasudevan EVL, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107:2950–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.

    Article  CAS  PubMed  Google Scholar 

  26. Egerton T, Thingstad P, Helbostad JL. Comparison of programs for determining temporal-spatial gait variables from instrumented walkway data: PKmas versus GAITRite. BMC Res Notes. 2014;7:542.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kerrigan DC, Todd MK, Della Croce U. Gender differences in joint biomechanics during walking: normative study in young adults. Am J Phys Med Rehabil. 1998;77:2–7.

    Article  CAS  PubMed  Google Scholar 

  28. Oberg T, Karsznia A, Oberg K. Basic gait parameters: reference data for normal subjects, 10–79 years of age. J Rehabil Res Dev. 1993;30:210–23.

    CAS  PubMed  Google Scholar 

  29. Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 2013;6:649–53.

    Article  PubMed  Google Scholar 

  30. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  31. Ramnani N, Passignham RE. Changes in the human brain during rhythm learning. J Cogn Neurosci. 2001;13(7):952–66.

    Article  CAS  PubMed  Google Scholar 

  32. Xu D, Liu T, Ashe J, Bushara KO. Role of the olivo-cerebellar system in timing. J Neurosci. 2006;26(22):5990–5.

    Article  CAS  PubMed  Google Scholar 

  33. Zelaznik HN, Spencer RMC, Ivry RB, Baria A, Bloom M, Dolansky L, et al. Timing variability in circle drawing and tapping: probing the relationship between event and emergent timing. J Mot Behav. 2005;37(5):395–403.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lewis PA, Miall RC. Brain activation patterns during measurement of sub and supra-second intervals. Neuropsychologia. 2003;41:1583–92.

    Article  CAS  PubMed  Google Scholar 

  35. Molinari M, Leggio MG, Thaut MH. The cerebellum and neural networks for rhythmic sensorimotor synchronisation in the human brain. Cerebellum. 2007;6:18–23.

    Article  PubMed  Google Scholar 

  36. Mangels JA, Ivry RB, Shimizu N. Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Cogn Brain Res. 1998;7:15–39.

    Article  CAS  Google Scholar 

  37. Kirchner WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol. 1958;55:352–8.

    Article  CAS  PubMed  Google Scholar 

  38. Hornstein AD, Rotter GS. Research methodology in temporal perception. J Exp Psychol. 1969;79:561–4.

    Article  CAS  PubMed  Google Scholar 

  39. Ebersbach G, Sojer M, Valldeoriola F, Wissel J, Müller J, Tolosa E, et al. Comparative analysis of gait in Parkinson's disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy. Brain. 1999;122:1349–55.

    Article  PubMed  Google Scholar 

  40. Pozzi NG, Minafra B, Zangaglia R, De Marzi R, Sandrini G, Priori A, et al. Transcranial direct current stimulation (tDCS) of the cortical motor areas in three cases of cerebellar ataxia. The Cerebellum; 13:109–112.

  41. Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG. Experience dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A. 2002;99(2):1017–22. doi:10.1073/pnas.022615199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Penhune VB, Doyon J. Cerebellum and M1 interaction during early learning of timed motor sequences. NeuroImage. 2005;26(3):801–12. doi:10.1016/j.neuroimage.2005.02.041.

    Article  CAS  PubMed  Google Scholar 

  43. Van Mier HI, Perlmutter JS, Petersen SE. Functional changes in brain activity during acquisition and practise of movement sequences. Mot Control. 2004;8:500–20.

    Article  Google Scholar 

  44. Puttemans V, Wenderoth N, Swinnen SP. Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticity. J Neurosci. 2005;25(17):4270–8. doi:10.1523/JNEUROSCI.3866-04.2005.

    Article  CAS  PubMed  Google Scholar 

  45. Shadmehr R, Holcomb H. Neural correlates of motor memory consolidation. Science. 1997;277.

  46. Schniepp R, Kugler G, Wuehr M, Eckl M, Huppert D, Huth S, et al. Quantification of gait changes in subjects with visual height intolerance when exposed to heights. Front Hum Neurosci. 2014;8:963.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37(6):703–13.

    Article  CAS  PubMed  Google Scholar 

  48. Husarova I, Lungu OV, Marecek R, Mikl M, Gescheidt T, Krupa P, et al. Functional imaging of the cerebellum and basal ganglia during predictive motor timing in early Parkinson’s disease. J Neuroimaging. 2011;24(1):45–53.

    Article  PubMed  Google Scholar 

  49. Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127:561–74.

    Article  PubMed  Google Scholar 

  50. Chapman JP, Chapman LJ, Allen JJ. The measurement of foot preference. Neuropsychologia. 1987;25:579–84.

    Article  CAS  PubMed  Google Scholar 

  51. Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: how to do it. Cerebellum. 2015;14(1):27–30.

    Article  PubMed  Google Scholar 

  52. Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation—a consensus paper. Cerebellum. 2014;13(1):121–38.

    Article  CAS  PubMed  Google Scholar 

  53. Rampersad SM, Janssen AM, Lucka F, Aydin Ü, Lanfer B, Lew S, et al. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng. 2014;22:441–52.

    Article  PubMed  Google Scholar 

  54. Wu HG, Miyamoto YR, Gonzalez Castro LN, Ölveczky BP, Smith MA. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nat Neurosci. 2014;17:312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Enticott.

Ethics declarations

This research was approved by the Human Research Ethics Committee of Deakin University (2014-063). All participants provided signed informed consent. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of Interest

There are no potential conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, L., Albein-Urios, N., Kirkovski, M. et al. Cathodal Transcranial Direct Current Stimulation (tDCS) to the Right Cerebellar Hemisphere Affects Motor Adaptation During Gait. Cerebellum 16, 168–177 (2017). https://doi.org/10.1007/s12311-016-0788-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0788-7

Keywords

Navigation