Skip to main content

Advertisement

Log in

Consensus Paper: Language and the Cerebellum: an Ongoing Enigma

  • Consensus Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In less than three decades, the concept “cerebellar neurocognition” has evolved from a mere afterthought to an entirely new and multifaceted area of neuroscientific research. A close interplay between three main strands of contemporary neuroscience induced a substantial modification of the traditional view of the cerebellum as a mere coordinator of autonomic and somatic motor functions. Indeed, the wealth of current evidence derived from detailed neuroanatomical investigations, functional neuroimaging studies with healthy subjects and patients and in-depth neuropsychological assessment of patients with cerebellar disorders shows that the cerebellum has a cardinal role to play in affective regulation, cognitive processing, and linguistic function. Although considerable progress has been made in models of cerebellar function, controversy remains regarding the exact role of the “linguistic cerebellum” in a broad variety of nonmotor language processes. This consensus paper brings together a range of different viewpoints and opinions regarding the contribution of the cerebellum to language function. Recent developments and insights in the nonmotor modulatory role of the cerebellum in language and some related disorders will be discussed. The role of the cerebellum in speech and language perception, in motor speech planning including apraxia of speech, in verbal working memory, in phonological and semantic verbal fluency, in syntax processing, in the dynamics of language production, in reading and in writing will be addressed. In addition, the functional topography of the linguistic cerebellum and the contribution of the deep nuclei to linguistic function will be briefly discussed. As such, a framework for debate and discussion will be offered in this consensus paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–87.

    PubMed  Google Scholar 

  2. Schmahmann J. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.

    CAS  PubMed  Google Scholar 

  3. Schmahmann JD. Rediscovery of an early concept. In: Schmahmann JD (Ed.) The cerebellum and cognition. Int Rev Neurobiol, vol. 41. San Diego: Academic; 1997. p. 3–27

  4. Snider RS, Eldred E. Cerebral projections to the tactile, auditory and visual areas of the cerebellum. Anat Rec. 1948;100:714.

    Google Scholar 

  5. Snider RS. Recent contributions to the anatomy and physiology of the cerebellum. Arch Neurol Psychiat. 1950;64:196–219.

    CAS  PubMed  Google Scholar 

  6. Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res. 1976;2:133–46.

    CAS  PubMed  Google Scholar 

  7. Dow RS. Some novel concepts of cerebellar physiology. Mt Sinai J Med. 1974;41:103–19.

    CAS  PubMed  Google Scholar 

  8. Heath RG. Modulation of emotion with a brain pacemaker. Treatment for intractable psychiatric illness. J Nerv Ment Dis. 1977;165:300–17.

    CAS  PubMed  Google Scholar 

  9. Heath RG. In: Schmahmann JD, editor. The cerebellum and cognition. Int Rev Neurobiol, vol. 41. San Diego: Academic; 1997. p

  10. Heath RG, Franklin DE, Shraberg D. Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. J Nerv Ment Dis. 1979;167:585–92.

    CAS  PubMed  Google Scholar 

  11. Cooper IS, Riklan M, Amin I, Cullinan T. A long-term follow-up study of cerebellar stimulation for the control of epilepsy. In: Cooper IS, editor. Cerebellar stimulation in man. New York: Raven Press; 1978. p. 19–38.

    Google Scholar 

  12. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.

    CAS  PubMed  Google Scholar 

  13. Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res. 1991;44:113–28.

    CAS  PubMed  Google Scholar 

  14. Schmahmann JD, Pandya DN. Posterior parietal projections to the basis pontis in rhesus monkey. Possible anatomical substrate for the cerebellar modulation of complex behavior. Neurology. 1987;37:297.

    Google Scholar 

  15. Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289:53–73.

    CAS  PubMed  Google Scholar 

  16. Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MHS, Stewart AL, et al. Cognitive and motor functions and the size of the cerebellum in adolescents born very pre-term. Brain. 2001;124:60–6.

    CAS  PubMed  Google Scholar 

  17. Ciesielski KT, Harris RJ, Hart BL, Pabst HF. Cerebellar hypoplasia and frontal lobe cognitive deficits in disorders of early childhood. Neuropsychologia. 1997;35:643–55.

    CAS  PubMed  Google Scholar 

  18. Paradiso S, Andreasen N, O’Leary DS, Arndt S, Robinson RG. Cerebellar size and cognition: correlations with IQ, verbal memory and motor dexterity. Neuropsy Neuropsy Be. 1997;10:1–8.

    CAS  Google Scholar 

  19. Mostofsky SH, Mazzocco MMN, Aakalu G, Warsofsky IS, Denckla MB, Reiss AL. Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance. Neurology. 1998;50:121–30.

    CAS  PubMed  Google Scholar 

  20. MacLeod CE, Zilles K, Schleicher A, Rilling JK, Gibson KR. Expansion of the neocerebellum in Hominoidea. J Hum Evol, 44(4):401–29. Erratum in: J Hum Evol. 2003;45(3):261

    Google Scholar 

  21. Pangelinan MM, Zhang G, VanMeter JW, Clark JE, Hatfield BD, Hauffler AJ. Beyond age and gender: relationships between cortical and subcortical brain volume and cognitive-motor abilities in school-age children. NeuroImage. 2011;54:3093–100.

    PubMed Central  PubMed  Google Scholar 

  22. Parker J, Mitchell A, Kalpakidou A, Walshe M, Jung HY, Nosarti C, et al. Cerebelar growth and behavioural and neuropsychological outcome in preterm adolescents. Brain. 2008;131:1344–51.

    PubMed  Google Scholar 

  23. Posthuma D, Baaré WFC, Hulshoff Pol HE, Kahn RS, Boomsma DI, De Geus EJC. Genetic correlations between brain volumes and the WAIS-111 dimensions of verbal comprehension, working memory, perceptual organization, and processing speed. Twin Research. 2003;6:131–9.

    PubMed  Google Scholar 

  24. Justus TC, Ivry RB. The cognitive neuropsychology of the cerebellum. Int Rev Psychiatr. 2001;13:276–82.

    Google Scholar 

  25. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    PubMed  Google Scholar 

  26. Gordon N. Speech, language, and the cerebellum. Eur J Disord of Commun. 1996;31:359–67.

    CAS  Google Scholar 

  27. Mariën P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang. 2001;79:580–600.

    PubMed  Google Scholar 

  28. Paquier PF, Mariën P. A synthesis of the role of the cerebellum in cognition. Aphasiology. 2005;19:3–19.

    Google Scholar 

  29. De Smet HJ, Baillieux H, De Deyn PP, Mariën P, Paquier P. The cerebellum and language: the story so far. Folia Phoniatr Logop. 2007;59:165–70.

    PubMed  Google Scholar 

  30. De Smet HJ, Paquier P, Verhoeven J, Mariën P. The cerebellum: its role in language and related cognitive and affective functions. Brain Lang. 2013 [Epub ahead of print]

  31. Beaton A, Mariën P. Language, cognition and the cerebellum: grappling with an enigma. Cortex. 2010;46:811–20.

    PubMed  Google Scholar 

  32. Murdoch BE. The cerebellum and language: historical perspective and review. Cortex. 2010;46:858–68.

    PubMed  Google Scholar 

  33. Highnam CL, Bleile KM. Language in the cerebellum. Am J Speech Lang Pathol. 2011;20:337–47.

    PubMed  Google Scholar 

  34. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.

    PubMed  Google Scholar 

  35. Ivry RB, Spencer RMC. The neural representation of time. Curr Opin Neurobiol. 2004;14:225–32.

    CAS  PubMed  Google Scholar 

  36. Keele SW, Ivry R. Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Ann N Y Acad Sci. 1990;608:179–211.

    CAS  PubMed  Google Scholar 

  37. D’Angelo E, Koekkoek SKE, Lombardo P, Solinas S, Ros E, Garrido J, et al. Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience. 2009;162:805–15.

    PubMed  Google Scholar 

  38. Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31:265–72.

    CAS  PubMed  Google Scholar 

  39. Ackermann H, Gräber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders. Brain Lang. 1997;60:323–31.

    CAS  PubMed  Google Scholar 

  40. Ackermann H, Gräber S, Hertrich I, Daum I. Cerebellar contributions to the perception of temporal cues within the speech and nonspeech domain. Brain Lang. 1999;67:228–41.

    CAS  PubMed  Google Scholar 

  41. Mathiak K, Hertrich I, Grodd W, Ackermann H. Cerebellum and speech perception: a functional magnetic resonance imaging study. J Cogn Neurosci. 2002;14:902–12.

    PubMed  Google Scholar 

  42. Mathiak K, Hertrich I, Grodd W, Ackermann H. Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of nonverbal auditory memory. NeuroImage. 2004;21:154–62.

    PubMed  Google Scholar 

  43. Ackermann H, Hertrich I. The contribution of the cerebellum to speech processing. J Neurolinguist. 2000;13:95–116.

    Google Scholar 

  44. Ivry RB, Gopal HS. Speech production and perception in patients with cerebellar lesions. Synergies in experimental psychology, artificial intelligence and cognitive neuroscience. In: Meyer DE, Kornblum S, editors. Attention Perform, vol. 14. Cambridge, MA: MIT Press; 1993. p. 771–802.

    Google Scholar 

  45. Spencer RMC, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science. 2003;300:1437–9.

    CAS  PubMed  Google Scholar 

  46. Petacchi A, Laird AR, Fox PT, Bower JM. Cerebellum and auditory function: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp. 2005;25:118–28.

    PubMed  Google Scholar 

  47. Sens PM, Almeida CIRD, Souza MMND, Gonçalves JBA, Carmo LCD. The role of the cerebellum in auditory processing using the SSI test. Braz J Otorhi. 2011;77:584–8.

    Google Scholar 

  48. Moore JK. The human auditory brain stem: a comparative view. Hearing Res. 1987;29(1):1–32.

    CAS  Google Scholar 

  49. Parsons LM, Petacchi A, Schmahmann JD, Bower JM. Pitch discrimination in cerebellar patients: evidence for a sensory deficit. Brain Res. 2009;1303:84–96.

    CAS  PubMed  Google Scholar 

  50. Kashino M, Kondo HM. Functional brain networks underlying perceptual switching: auditory streaming and verbal transformations. Philos T Roy Soc B. 2012;367:977–87.

    Google Scholar 

  51. Stoodley CJ, Stein JF. The cerebellum and dyslexia. Cortex. 2011;47(1):101–16.

    PubMed  Google Scholar 

  52. Powers AR, Hevey MA, Wallace MT. Neural correlates of multisensory perceptual learning. J Neurosci. 2012;32:6263–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Schwartze M, Tavano A, Schröger E, Kotz SA. Temporal aspects of prediction in audition: cortical and subcortical neural mechanisms. Int J Psychophysiol. 2012;83:200–7.

    PubMed  Google Scholar 

  54. Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci. 2000;3:1212–7.

    CAS  PubMed  Google Scholar 

  55. Bohland JW, Bullock D, Guenther FH. Neural representations and mechanisms for the performance of simple speech sequences. J Cognitive Neurosci. 2010;22:1504–29.

    Google Scholar 

  56. Perkell JS. Movement goals and feedback and feedforward control mechanisms in speech production. J Neurolinguist. 2012;25:382–407.

    Google Scholar 

  57. Roelofs A. WEAVER++ and other computional models of lemma retrieval and word-form encoding. In: Wheeldon L, editor. Aspects of language production. Sussex, UK: Psychology Press; 2000. p. 71–114.

    Google Scholar 

  58. Cholin J, Levelt WJ, Schiller NO. Effects of syllable frequency in speech production. Cognition. 2006;99:205–35.

    PubMed  Google Scholar 

  59. Mooshammer C, Goldstein L, Nam H, McClure S, Saltzman E, Tiede M. Bridging planning and execution: temporal planning of syllables. J Phonetics. 2012;40:374–89.

    Google Scholar 

  60. Ziegler W, Aichert I, Staiger A. Apraxia of speech: concepts and controversies. J Speech LangHear R. 2012;55:S1485–501.

    Google Scholar 

  61. Ackermann H, Ziegler W. Brain mechanisms underlying speech. In: Hardcastle WJ, Laver J, Gibbon FE, editors. The handbook of phonetic sciences. New York: Wiley-Blackwell; 2010. p. 202–50.

    Google Scholar 

  62. Bohland JW, Guenther FH. An fMRI investigation of syllable sequence production. Neuroimage. 2006;32:821–41.

    PubMed  Google Scholar 

  63. Shuster LI, Lemieux SK. An fMRI investigation of covertly and overtly produced mono- and multisyllabic words. Brain Lang. 2005;93:20–31.

    PubMed  Google Scholar 

  64. Brendel B, Erb M, Riecker A, Grodd W, Ackermann H, Ziegler W. Do we have a “mental syllabary” in the brain? An fMRI study. Mot Control. 2011;15:34–51.

    Google Scholar 

  65. Riecker A, Brendel B, Ziegler W, Erb M, Ackermann H. The influence of syllable onset complexity and syllable frequency on speech motor control. Brain Lang. 2008;107:102–13.

    PubMed  Google Scholar 

  66. Papoutsi M, de Zwart JA, Jansma JM, Pickering MJ, Bednar JA, Horwitz B. From phonemes to articulatory codes: an fMRI study of the role of Broca’s area in speech production. Cereb Cortex. 2009;19:2156–65.

    PubMed Central  PubMed  Google Scholar 

  67. Eickhoff SB, Heim S, Zilles K, Amunts K. A systems perspective on the effective connectivity of overt speech production. Philos T Roy Soc A. 2009;367:2399–421.

    Google Scholar 

  68. Ziegler W. Apraxia of speech. In: Goldenberg G, Miller B, editors. Handbook of Clinical Neurology. London: Elsevier; 2008. p. 269–85.

    Google Scholar 

  69. Dronkers NF. A new brain region for coordinating speech articulation. Nature. 1996;384:159–61.

    CAS  PubMed  Google Scholar 

  70. Hillis AE, Work M, Barker PB, Jacobs MA, Breese EL, Maurer K. Re-examining the brain regions crucial for orchestrating speech articulation. Brain. 2004;127:1479–87.

    PubMed  Google Scholar 

  71. Ottomeyer C, Reuter B, Jäger T, Rossmanith C, Hennerici MG, Szabo K. Aphemia: an isolated disorder of speech associated with an ischemic lesion of the left precentral gyrus. J Neurol. 2009;256:1166–8.

    PubMed  Google Scholar 

  72. Schiff HB, Alexander MP, Naeser MA, Galaburda AM. Aphemia. Clinical-anatomic correlations. Arch Neurol-Chicago. 1983;40:720–7.

    CAS  PubMed  Google Scholar 

  73. Terao Y, Ugawa Y, Yamamoto T, Sakurai Y, Masumoto T, Abe O, et al. Primary face motor area as the motor representation of articulation. J Neurol. 2007;254:442–7.

    PubMed  Google Scholar 

  74. Duffy JR. Motor speech disorders: substrates, differential diagnosis, and management. Saint Louis: Elsevier; 2005.

    Google Scholar 

  75. Mariën P, Verhoeven J, Engelborghs S, Rooker S, Pickut BA, De Deyn PP. A role for the cerebellum in motor speech planning: evidence from foreign accent syndrome. Clin Neurol Neurosurg. 2006;108:518–22.

    PubMed  Google Scholar 

  76. Mariën P, Verhoeven J. Cerebellar involvement in motor speech planning: some further evidence from foreign accent syndrome. Folia Phoniatr Logo. 2007;59:210–7.

    Google Scholar 

  77. Ziegler W, Wessel K. Speech timing in ataxic disorders: sentence production and rapid repetitive articulation. Neurology. 1996;47:208–14.

    CAS  PubMed  Google Scholar 

  78. Ziegler W. Task-related factors in oral motor control: speech and oral diadochokinesis in dysarthria and apraxia of speech. Brain Lang. 2002;80:556–75.

    PubMed  Google Scholar 

  79. Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–39.

    CAS  PubMed  Google Scholar 

  80. Ben-Yehudah G, Fiez JA. Impact of cerebellar lesions on reading and phonological processing. Ann NY Acad Sci. 2008;1145:260–74.

    PubMed  Google Scholar 

  81. Chiricozzi FR, Clausi S, Molinari M, Leggio MG. Phonological short-term store impairment after cerebellar lesion: a single case study. Neuropsychologia. 2008;46(7):1940–53.

    PubMed  Google Scholar 

  82. Hokkanen LS, Kauranen V, Roine RO, Salonen O, Kotila M. Subtle cognitive deficits after cerebellar infarcts. Eur J Neurol. 2006;13(2):161–70.

    CAS  PubMed  Google Scholar 

  83. Justus T, Ravizza SM, Fiez JA, Ivry RB. Reduced phonological similarity effects in patients with damage to the cerebellum. Brain Lang. 2005;95(2):304–18.

    PubMed Central  PubMed  Google Scholar 

  84. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129:306–20.

    PubMed  Google Scholar 

  85. Ziemus B, Baumann O, Luerding R, Schlosser R, Schuierer G, Bogdahn U, et al. Impaired working-memory after cerebellar infarcts paralleled by changes in BOLD signal of a cortico-cerebellar circuit. Neuropsychologia. 2007;45(9):2016–24.

    CAS  PubMed  Google Scholar 

  86. Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47(1):137–44.

    PubMed  Google Scholar 

  87. Cooper FE, Grube M, Von Kriegstein K, Kumar S, English P, Kelly TP, et al. Distinct critical cerebellar subregions for components of verbal working memory. Neuropsychologia. 2012;50(1):189–97.

    PubMed  Google Scholar 

  88. de Ribaupierre S, Ryser C, Villemure JG, Clarke S. Cerebellar lesions: is there a lateralisation effect on memory deficits? Acta Neurochir (Wien). 2008;150(6):545–50.

    Google Scholar 

  89. Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosur Ps. 2004;75(11):1524–31.

    CAS  Google Scholar 

  90. Kirschen MP, Davis-Ratner MS, Milner MW, Chen SH, Schraedley-Desmond P, Fisher PG, et al. Verbal memory impairments in children after cerebellar tumor resection. Behav Neurol. 2008;20:39–53.

    PubMed Central  PubMed  Google Scholar 

  91. Law N, Bouffet E, Laughlin S, Laperriere N, Briere ME, Strother D, et al. Cerebello-thalamo-cerebral connections in pediatric brain tumor patients: impact on working memory. NeuroImage. 2011;56(4):2238–48.

    PubMed  Google Scholar 

  92. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.

    PubMed  Google Scholar 

  93. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123:1051–61.

    PubMed  Google Scholar 

  94. Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43(10):685–91.

    CAS  PubMed  Google Scholar 

  95. Silveri MC, Di Betta AM, Filippini V, Leggio MG, Molinari M. Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain. 1998;121:2175–87.

    PubMed  Google Scholar 

  96. Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lövblad KO, Ridolfi Luthy A, et al. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain. 2003;126:1998–2008.

    PubMed  Google Scholar 

  97. Vaquero E, Gomez CM, Quintero EA, Gonzalez-Rosa JJ, Marquez J. Differential prefrontal-like deficit in children after cerebellar astrocytoma and medulloblastoma tumor. Behav Brain Funct. 2008;4:18.

    PubMed Central  PubMed  Google Scholar 

  98. Timmann D, Daum I. How consistent are cognitive impairments in patients with cerebellar disorders? Behav Neurol. 2010;23:81–100.

    PubMed  Google Scholar 

  99. Chen SH, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37.

    PubMed  Google Scholar 

  100. Ben-Yehudah G, Guediche S, Fiez JA. Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum. 2007;6(3):193–201.

    PubMed  Google Scholar 

  101. Desmond JE, Gabrieli JDE, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–85.

    CAS  PubMed  Google Scholar 

  102. Ackermann H, Mathiak K, Ivry RB. Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev. 2004;3(1):14–22.

    PubMed  Google Scholar 

  103. Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20(3):271–9.

    PubMed Central  PubMed  Google Scholar 

  104. Chen SH, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. NeuroImage. 2005;24(2):332–8.

    PubMed  Google Scholar 

  105. Kirschen MP, Chen SH, Desmond JE. Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study. Behav Neurol. 2010;23:51–63.

    PubMed Central  PubMed  Google Scholar 

  106. Awh E, Jonides J, Smith EE, Schumacher EH, Koeppe RA, Katz S. Dissociation of storage and rehearsal in verbal working memory: evidence from positron emission tomography. Psychol Sci. 1996;7(1):25–31.

    Google Scholar 

  107. Chein JM, Fiez JA. Dissociation of verbal working memory system components using a delayed serial recall task. Cereb Cortex. 2001;11(11):1003–14.

    CAS  PubMed  Google Scholar 

  108. Durisko C, Fiez JA. Functional activation in the cerebellum during working memory and simple speech tasks. Cortex. 2010;46(7):896–906.

    PubMed Central  PubMed  Google Scholar 

  109. Fiez JA, Raife EA, Balota DA, Schwarz JP, Raichle ME, Petersen SE. A positron emission tomography study of the short-term maintenance of verbal information. J Neurosci. 1996;16(2):808–22.

    CAS  PubMed  Google Scholar 

  110. Grasby PM, Frith CD, Friston KJ, Bench C, Frackowiak RS, Dolan RJ. Functional mapping of brain areas implicated in auditory–verbal memory function. Brain. 1993;116:1–20.

    PubMed  Google Scholar 

  111. Grasby PM, Frith CD, Friston KJ, Simpson J, Fletcher PC, Frackowiak RS, et al. A graded task approach to the functional mapping of brain areas implicated in auditory-verbal memory. Brain. 1994;117:1271–82.

    PubMed  Google Scholar 

  112. Gruber O. Effects of domain-specific interference on brain activation associated with verbal working memory task performance. Cereb Cortex. 2001;11(11):1047–55.

    CAS  PubMed  Google Scholar 

  113. Hautzel H, Mottaghy FM, Specht K, Muller HW, Krause BJ. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. NeuroImage. 2009;47(4):2073–82.

    PubMed  Google Scholar 

  114. Hayter AL, Langdon DW, Ramnani N. Cerebellar contributions to working memory. NeuroImage. 2007;36(3):943–54.

    CAS  PubMed  Google Scholar 

  115. Henson RN, Burgess N, Frith CD. Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. Neuropsychologia. 2000;38(4):426–40.

    CAS  PubMed  Google Scholar 

  116. Jonides J, Schumacher EH, Smith EE, Koeppe RA, Awh E, Reuter-Lorenz PA, et al. The role of parietal cortex in verbal working memory. J Neurosci. 1998;18(13):5026–34.

    CAS  PubMed  Google Scholar 

  117. Jonides J, Schumacher EH, Smith EE, Lauber EJ, Awh E, Minoshima S, et al. Verbal working memory load affects regional brain activation as measured by PET. J Cognitive Neurosci. 1997;9:462–75.

    CAS  Google Scholar 

  118. Kirschen MP, Chen SH, Schraedley-Desmond P, Desmond JE. Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. NeuroImage. 2005;24(2):462–72.

    PubMed  Google Scholar 

  119. LaBar KS, Gitelman DR, Parrish TB, Mesulam M. Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. NeuroImage. 1999;10(6):695–704.

    CAS  PubMed  Google Scholar 

  120. Marvel CL, Desmond JE. The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex. 2010;46(7):880–95.

    PubMed Central  PubMed  Google Scholar 

  121. Marvel CL, Desmond JE. From storage to manipulation: how the neural correlates of verbal working memory reflect varying demands on inner speech. Brain Lang. 2012;120(1):42–51.

    PubMed Central  PubMed  Google Scholar 

  122. Paulesu E, Frith CD, Frackowiak RS. The neural correlates of the verbal component of working memory. Nature. 1993;362(6418):342–5.

    CAS  PubMed  Google Scholar 

  123. Schumacher EH, Lauber E, Awh E, Jonides J, Smith EE, Koeppe RA. PET evidence for an amodal verbal working memory system. NeuroImage. 1996;3(2):79–88.

    CAS  PubMed  Google Scholar 

  124. Smith EE, Jonides J, Koeppe RA. Dissociating verbal and spatial working memory using pet. Cereb Cortex. 1996;6(1):11–20.

    CAS  PubMed  Google Scholar 

  125. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage. 2011;59(2):1560–70.

    PubMed Central  PubMed  Google Scholar 

  126. Thurling M, Hautzel H, Kuper M, Stefanescu MR, Maderwald S, Ladd ME, et al. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: a 7 T fMRI study. NeuroImage. 2012;62(3):1537–50.

    CAS  PubMed  Google Scholar 

  127. Sternberg S. High-speed scanning in human memory. Science. 1966;153(736):652–4.

    CAS  PubMed  Google Scholar 

  128. Desmond JE, Chen SH, DeRosa E, Pryor MR, Pfefferbaum A, Sullivan EV. Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. NeuroImage. 2003;19(4):1510–20.

    PubMed  Google Scholar 

  129. Marvel CL, Faulkner ML, Strain EC, Mintzer MZ, Desmond JE. An FMRI investigation of cerebellar function during verbal working memory in methadone maintenance patients. Cerebellum. 2012;11(1):300–10.

    PubMed Central  PubMed  Google Scholar 

  130. Silverman DH, Dy CJ, Castellon SA, Lai J, Pio BS, Abraham L, et al. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat. 2007;103(3):303–11.

    CAS  PubMed  Google Scholar 

  131. Abwender DA, Swan JG, Bowerman JT, Connolly SW. Qualitative analysis of verbal fluency output: review and comparison of several scoring methods. Assessment. 2001;8:323–38.

    CAS  PubMed  Google Scholar 

  132. Arasanz CP, Staines WR, Roy EA, Schweizer TA. The cerebellum and its role in word generation: a cTBS study. Cortex. 2012;48:718–24.

    PubMed  Google Scholar 

  133. Brandt J, Leroi I, O’Hearn E, Rosenblatt A, Margolis RL. Cognitive impairments in cerebellar degeneration: a comparison with Huntington’s disease. J Neuropsych Clin N. 2004;16:176–84.

    Google Scholar 

  134. Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM. Does the cerebellum contribute to specific aspects of attention? Neuropsychologia. 2003;41:1452–60.

    PubMed  Google Scholar 

  135. Leggio M, Silveri M, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosur Ps. 2000;69:102–6.

    CAS  Google Scholar 

  136. Peterburs J, Bellebaum C, Koch B, Schwarz M, Daum I. Working memory and verbal fluency deficits following cerebellar lesions: relation to interindividual differences in patient variables. Cerebellum. 2010;9:375–83.

    PubMed  Google Scholar 

  137. Richter S, Gerwig M, Aslan B, Wilhelm H, Schoch B, Dimitrova A, et al. Cognitive functions in patients with MR-defined chronic focal cerebellar lesions. J Neurol. 2007;254:1193–203.

    PubMed  Google Scholar 

  138. Schweizer TA, Alexander MP, Susan Gillingham BA, Cusimano M, Stuss DT. Lateralized cerebellar contributions to word generation: a phonemic and semantic fluency study. Behav Neurol. 2010;23:31–7.

    PubMed  Google Scholar 

  139. Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110:149–53.

    PubMed  Google Scholar 

  140. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134:3669–83.

    Google Scholar 

  141. Rosser A, Hodges JR. Initial letter and semantic category fluency in Alzheimer’s disease, Huntington’s disease, and progressive supranuclear palsy. J Neurol Neurosur Ps. 1994;57:1389–94.

    CAS  Google Scholar 

  142. Troster AI, Warmflash V, Osorio I, Paolo AM, Alexander LJ, Barr WB. The roles of semantic networks and search efficiency in verbal fluency performance in intractable temporal lobe epilepsy. Epilepsy Res. 1995;21:19–21.

    CAS  PubMed  Google Scholar 

  143. Martin A, Wiggs CL, Lalonde FM, Wiggs CL, Ungerleider LG. Word retrieval to letter and semantic cues: A double dissociation in normal subjects using interference tasks. Neuropsychologia. 1994;32:1487–94.

    CAS  PubMed  Google Scholar 

  144. Troyer AK, Moscovitch M, Winocur G, Alexander MP, Stuss D. Clustering and switching on verbal fluency: the effects of focal frontal- and temporal-lobe lesions. Neuropsychologia. 1998;36:499–504.

    CAS  PubMed  Google Scholar 

  145. Stuss DT, Alexander MP. Is there a dysexecutive syndrome? Philos T Roy Soc B. 2007;362:901–15.

    Google Scholar 

  146. Braitenberg V, Heck D, Sultan F. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci. 1997;20:229–77.

    CAS  PubMed  Google Scholar 

  147. Ivry R. Cerebellar timing systems. Int Rev Neurobiol. 1997;41:555–73.

    CAS  PubMed  Google Scholar 

  148. Mauk MD, Medina JF, Nores WL, Ohyama T. Cerebellar function: coordination, learning or timing? Curr Biol. 2000;10:522–5.

    Google Scholar 

  149. Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De Lisa GM, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.

    PubMed  Google Scholar 

  150. Bower JM. Control of sensory data acquisition. Int Rev Neurobiol. 1997;41:489–513.

    CAS  PubMed  Google Scholar 

  151. Restuccia D, Della Marca G, Valeriani M, Leggio MG, Molinari M. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatchnegativity study. Brain. 2007;130:276–87.

    PubMed  Google Scholar 

  152. Tesche CD, Karhu JJT. Anticipatory cerebellar response during somatosensory omission in man. Hum Brain Mapp. 2000;9:119–42.

    CAS  PubMed  Google Scholar 

  153. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    CAS  PubMed  Google Scholar 

  154. Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.

    CAS  PubMed  Google Scholar 

  155. Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78:272–303.

    PubMed  Google Scholar 

  156. Fabbro F, Moretti R, Bava A. Language impairments in patients with cerebellar lesions. J Neuroling. 2000;13:173–88.

    Google Scholar 

  157. Gasparini M, Di Piero V, Ciccarelli O, Cacioppo MM, Pantano P, Lenzi GL. Linguistic impairment after right cerebellar stroke: a case report. Eur J Neurol. 1999;6:353–6.

    CAS  PubMed  Google Scholar 

  158. Justus T. The cerebellum and English grammatical morphology: evidence from production, comprehension, and grammaticality judgements. J Cogn Neurosci. 2004;16(7):1115–30.

    PubMed Central  PubMed  Google Scholar 

  159. Mariën P, Baillieux H, De Smet HJ, Engelborghs S, Wilssens I, Paquier P, et al. Cognitive, linguistic and affective disturbances following a right superior cerebellar artery infarction: a case study. Cortex. 2009;45:527–36.

    PubMed  Google Scholar 

  160. Silveri MC, Leggio MG, Molinari M. The cerebellum contributes to linguistic production: a case of agrammatic speech following a right cerebellar lesion. Neurology. 1994;44:2047–50.

    CAS  PubMed  Google Scholar 

  161. Adamaszek M, Strecker K, Kessler C. Impact of cerebellar lesion on syntactic processing evidenced by event-related potentials. Neurosci Lett. 2012;12(2):78–82.

    Google Scholar 

  162. Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16:444–47.

    CAS  PubMed  Google Scholar 

  163. Friederici AD. Neural basis of syntactic processes. In: Gazzaniga MS, editor. The cognitive neurosciences. Plaats van uitgave:MIT Press; 2004. p. 789–801.

  164. Kotz SA, Schwartze M. Cortical speech processing unplugged: a timely subcortico-cortical framework. Trends Cogn Sci. 2010;14:392–99.

    PubMed  Google Scholar 

  165. Ullman MT. A neurocognitive perspective on language: the declarative/procedural model. Nat Rev Neurosci. 2001;2(10):717–26.

    CAS  PubMed  Google Scholar 

  166. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor Function. Ann Rev Neurosci. 2009;32:413–34.

    CAS  PubMed  Google Scholar 

  167. Strelnikov K, Vorobyev VA, Chernigovskaya TV, Medvedev SV. Prosodic clues to syntactic processing – a PET and ERP study. NeuroImage. 2006;29:1127–34.

    CAS  PubMed  Google Scholar 

  168. Aso K, Hanokawa T, Aso T, Fukuyama H. Cerebro-cerebellar interactions underlying temporal information processing. J Cogn Neurosci. 2010;22(12):2913–25.

    PubMed  Google Scholar 

  169. Fridrikson J, Morrow L. Cortical activation and language task difficulty in aphasia. Aphasiology. 2005;19:239–50.

    Google Scholar 

  170. Witt K, Nühsman A, Deuschl G. Intact artificial grammar learning in patients with cerebellar degeneration and advanced Parkinson’s disease. Neuropsychologia. 2002;40(9):1534–40.

    CAS  PubMed  Google Scholar 

  171. Hagoort P. How the brain solves the binding problem for language: a neurocomputational model of syntactic processing. NeuroImage. 2003;20:Suppl18-29.

    Google Scholar 

  172. Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007;27:10659–73.

    CAS  PubMed  Google Scholar 

  173. Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review Cortex. 2009;46(7):845–57.

    Google Scholar 

  174. Mariën P, Saerens J, Nanhoe R, Moens E, Nagels G, Pickut BA, et al. Cerebellar induced aphasia: case report of cerebellar induced prefrontal aphasic language phenomena supported by SPECT findings. J Neurol Sci. 1996;144:34–43.

    PubMed  Google Scholar 

  175. Mariën P, Engelborghs S, Pickut B, De Deyn PP. Aphasia following cerebellar damage: fact or fallacy? J Neurolinguist. 2000;13:145–71.

    Google Scholar 

  176. Cook M, Murdoch B, Cahill L, Whelan B. Higher-level language deficits resulting from left primary cerebellar lesions. Aphasiology. 2004;18:771–84.

    Google Scholar 

  177. Murdoch B, Whelan BM. Language disorders subsequent to left cerebellar lesions: a case for bilateral cerebellar involvement in language? Folia Phoniatr Logop. 2007;59:184–9.

    PubMed  Google Scholar 

  178. Frank B, Schoch B, Hein-Kropp C, Hövel M, Gizewski E, Karnath HO, et al. Aphasia, neglect and extinction are no prominent clinical signs in children and adolescents with acute surgical cerebellar lesions. Exp Brain Res. 2008;184:511–9.

    PubMed  Google Scholar 

  179. Richter S, Schoch B, Kaiser O, Groetschel H, Hein-Kropp C, Maschke M, et al. Children and adolescents with chronic cerebellar lesions show no clinically relevant signs of aphasia or neglect. J Neurophysiol. 2005;94:4108–20.

    CAS  PubMed  Google Scholar 

  180. Frank B, Maschke M, Groetschel H, Berner M, Schoch B, Hein-Kropp C, et al. Aphasia and neglect are uncommon in cerebellar disease: negative findings in a prospective study in acute cerebellar stroke. Cerebellum. 2010;9:556–66.

    PubMed  Google Scholar 

  181. Molinari M, Leggio M, Silveri M. Verbal fluency and agrammatism. In: Schmahmann JD, editor. The cerebellum and cognition. New York: Academic Press; 1997. p. 325–39.

    Google Scholar 

  182. Fiez JA, Petersen SE, Cheney MK, Raichle ME. Impaired nonmotor learning and error detection associated with cerebellar damage. Brain. 1992;115:155–78.

    PubMed  Google Scholar 

  183. Leggio MG, Solida A, Silveri M, Gainotto G, Molinari M. Verbal fluency impairments in patients with cerebellar lesions. Soc Neurosci Abst. 1995;21:917.

    Google Scholar 

  184. Baillieux H, De Smet HJ, Lesage G, Paquier PF, Mariën P. Neurobehavioral alterations in an adolescent following posterior fossa tumor resection. Cerebellum. 2006;5:289–95.

    PubMed  Google Scholar 

  185. Zettin M, Cappa SF, D’Amico A, Rago R, Perino C, Perani D, et al. Agrammatic speech production after a right cerebellar haemorrhage. Neurocase. 1997;3:375–80.

    Google Scholar 

  186. Hassid E. A case of language dysfunction associated with cerebellar infarction. J Neurorehab Neural Repair. 1995;9:157–62.

    Google Scholar 

  187. Molinari M, Leggio M, Solida A, Ciorra R, Misciagna S, Silveri M, et al. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120:1753–62.

    PubMed  Google Scholar 

  188. Burk K. Cognition in hereditary ataxia. Cerebellum. 2007;6:280–6.

    PubMed  Google Scholar 

  189. Hubrich-Ungureanu P, Kaemmerer N, Henn FA, Braus DF. Lateralized organization of the cerebellum in a silent verbal fluency task: a functional magnetic resonance imaging study in healthy volunteers. Neurosci Letters. 2002;319:91–4.

    CAS  Google Scholar 

  190. Mariën P, de Smet E, de Smet HJ, Wackenier P, Dobbeleir A, Verhoeven J. “Apraxic dysgraphia” in a 15-year-old left-handed patient: disruption of the cerebello-cerebral network involved in the planning and execution of graphomotor movements. Cerebellum. 2013;12:131–9.

    PubMed  Google Scholar 

  191. Fabbro F, Tavano A, Corti S, Bresolin N, De Fabritiis P, Borgatti R. Long-term neuropsychological deficits after cerebellar infarctions in two young adult twins. Neuropsychologia. 2004;42(4):536–45.

    CAS  PubMed  Google Scholar 

  192. Moretti R, Torre P, Antonello RM, Carraro N, Zambito-Marsala S, Ukmar MJ, et al. Peculiar aspects of reading and writing performances in patients with olivopontocerebellar atrophy. Percept Mot Skills. 2002;94:677–94.

    PubMed  Google Scholar 

  193. Mariën P, Verhoeven J, Brouns R, De Witte L, Dobbeleir A, De Deyn PP. Apraxic agraphia following a right cerebellar hemorrhage. Neurology. 2007;69(9):926–9.

    PubMed  Google Scholar 

  194. De Smet HJ, Engelborghs S, Paquier PF, De Deyn PP, Mariën P. Cerebellar-induced apraxic agraphia: a review and three new cases. Brain Cognition. 2011;76(3):424–34.

    PubMed  Google Scholar 

  195. Katanoda K, Yoshikawa K, Sugishita M. A functional MRI study on the neural substrates for writing. Hum Brain Mapp. 2001;13(1):34–42.

    CAS  PubMed  Google Scholar 

  196. Silveri MC, Misciagna S, Leggio MG, Molinari M. Cerebellar spatial dysgraphia: further evidence. J Neurol. 1999;246(4):312–3.

    CAS  PubMed  Google Scholar 

  197. Silveri MC, Misciagna S, Leggio MG, Molinari M. Spatial dysgraphia and cerebellar lesion: a case report. Neurology. 1997;48(6):1529–32.

    CAS  PubMed  Google Scholar 

  198. Fournier del Castillo MC, Maldonado Belmonte MJ, Ruiz-Falcó Rojas ML, López Pino MA, Bernabeu Verdú J, Suárez Rodríguez JM. Cerebellum atrophy and development of a peripheral dysgraphia: a paediatric case. Cerebellum. 2010;9(4):530–6.

    PubMed  Google Scholar 

  199. Frings M, Gaertner K, Buderath P, Christiansen H, Gerwig M, Hein-Kropp C, et al. Megalographia in children with cerebellar lesions and in children with attention-deficit/hyperactivity disorder. Cerebellum. 2010;9(3):429–32.

    PubMed  Google Scholar 

  200. Rapcsak S, Beeson P. Agraphia. In: Crosson B, Rothi L, Nadeau S, editors. Aphasia and language: theory and practice. New York: Guilford; 2000. p. 184–220.

    Google Scholar 

  201. Haggard P, Jenner J, Wing A. Coordination of aimed movements in a case with unilateral cerebellar damage. Neuropsychologia. 1994;32:827–46.

    CAS  PubMed  Google Scholar 

  202. Huey EB. The psychology and pedagogy of reading. New York: Macmillan; 1908.

    Google Scholar 

  203. Shaywitz BA, Skudlarski P, Holahan JM, Marchione KE, Constable RT, Fulbright RK, et al. Age-related changes in reading systems of dyslexic children. Ann Neurol. 2007;61(4):363–70.

    PubMed  Google Scholar 

  204. Schlaggar BL, McCandliss BD. Development of neural systems for reading. Annu Rev Neurosci. 2007;30:475–503.

    CAS  PubMed  Google Scholar 

  205. Pugh KR, Mencl WE, Jenner AR, Katz L, Frost SJ, Lee JR, et al. Neurobiological studies of reading and reading disability. J Commun Disord. 2001;34(6):479–92.

    CAS  PubMed  Google Scholar 

  206. Berl MM, Duke ES, Mayo J, Rosenberger LR, Moore EN, VanMeter J, et al. Functional anatomy of listening and reading comprehension during development. Brain Lang. 2010;114(2):115–25.

    PubMed Central  PubMed  Google Scholar 

  207. Lindenberg R, Scheef L. Supramodal language comprehension: role of the left temporal lobe for listening and reading. Neuropsychologia. 2007;45(10):2407–15.

    PubMed  Google Scholar 

  208. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.

    CAS  PubMed  Google Scholar 

  209. Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage. 2010;49(3):2045–52.

    CAS  PubMed  Google Scholar 

  210. Ito M. Opinion - control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.

    CAS  PubMed  Google Scholar 

  211. Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6(3):202–13.

    PubMed  Google Scholar 

  212. Desmond JE, Fiez JA. Neuroimaging studies of the cerebellum: language, learning and memory. Trends Cogn Sci. 1998;2(9):355–62.

    CAS  PubMed  Google Scholar 

  213. Vlachos F, Papathanasiou I, Andreou G. Cerebellum and reading. Folia Phoniatr Logo. 2007;59(4):177–83.

    Google Scholar 

  214. Fulbright RK, Jenner AR, Mencl WE, Pugh KR, Shaywitz BA, Shaywitz SE, et al. The cerebellum’s role in reading: a functional MR imaging study. Am J Neuroradiol. 1999;20:1925–30.

    CAS  PubMed  Google Scholar 

  215. Doyon J, Penhune V, Ungerleider LG. Distinct contribution of the cortico-striatal and cortico- cerebellar systems to motor skill learning. Neuropsychologia. 2003;41(3):252–62.

    PubMed  Google Scholar 

  216. Booth JR, Wood L, Lu D, Houk JC, Bitan T. The role of the basal ganglia and cerebellum in language processing. Brain Res. 2007;1133(1):136–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Maisog JM, Einbinder ER, Flowers DL, Turkeltaub PE, Eden GF. A meta-analysis of functional neuroimaging studies of dyslexia. In: Eden GF, Flower DL, editors. Learning, skill acquisition, reading, and dyslexia. Oxford: Blackwell; 2008. p. 237–59.

    Google Scholar 

  218. Vellutino FR, Fletcher JM, Snowling M, Scanlon DM. Specific reading disability (dyslexia): what have we learned in the past four decades? J Child Psychol Psyc. 2004;45(1):2–40.

    Google Scholar 

  219. Shaywitz SE, Morris R, ShaywitZ BA. The education of dyslexic children from childhood to young adulthood. Annu Rev of Psychol. 2008;59:451–75.

    Google Scholar 

  220. Stein JF. The magnocellular theory of developmental dyslexia. Dyslexia. 2001;7:12–36.

    CAS  PubMed  Google Scholar 

  221. Nicolson RI, Fawcett AJ. Automaticity: a new framework for dyslexia research? Cognition. 1990;35(2):159–82.

    CAS  PubMed  Google Scholar 

  222. Nicolson RI, Fawcett AJ, Dean P. Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci. 2001;24(9):508–11.

    CAS  PubMed  Google Scholar 

  223. Pennington BF, Bishop DVM. Relations among speech, language, and reading disorders. Annu Rev Psychol. 2009;60:283–306.

    PubMed  Google Scholar 

  224. Nicolson RI, Fawcett AJ. Procedural learning difficulties: reuniting the developmental disorders? Trends Neurosci. 2007;30(4):135–41.

    CAS  PubMed  Google Scholar 

  225. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    PubMed Central  PubMed  Google Scholar 

  226. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    PubMed Central  PubMed  Google Scholar 

  228. Thurling M, Kuper M, Stefanescu R, Maderwald S, Gizewski ER, Ladd ME, et al. Activation of the dentate nucleus in a verb generation task: a 7 T MRI study. NeuroImage. 2011;57(3):1184–91.

    CAS  PubMed  Google Scholar 

  229. Snider R, Stowell A. Electro-anatomical studies on a tactile system in the cerebellum of monkey (macaca mulatta). Anat Rec. 1944;88:457.

    Google Scholar 

  230. Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13(2):55–73.

    CAS  PubMed  Google Scholar 

  231. Urban PP, Marx J, Hunsche S, Gawehn J, Vucurevic G, Wicht S, et al. Cerebellar speech representation: lesion topography in dysarthria as derived from cerebellar ischemia and functional magnetic resonance imaging. Arch Neurol. 2003;60(7):965–72.

    PubMed  Google Scholar 

  232. Peeva MG, Guenther FH, Tourville JA, Nieto-Castanon A, Anton JL, Nazarian B, et al. Distinct representations of phonemes, syllables, and supra-syllabic sequences in the speech production network. Neuroimage. 2010;50(2):626–38.

    PubMed Central  PubMed  Google Scholar 

  233. Ackermann H, Vogel M, Petersen D, Poremba M. Speech deficits in ischaemic cerebellar lesions. J Neurol. 1992;239(4):223–7.

    CAS  PubMed  Google Scholar 

  234. Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. NeuroImage. 2006;30(1):36–51.

    CAS  PubMed  Google Scholar 

  235. Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65.

    PubMed  Google Scholar 

  236. Jansen A, Floel A, Randenborgh JV, Konrad C, Rotte M, Forster AF, et al. Crossed cerebro-cerebellar language dominance. Hum Brain Mapp. 2005;24:165–72.

    PubMed  Google Scholar 

  237. Carreiras M, Mechelli A, Estevez A, Price CJ. Brain activation for lexical decision and reading aloud: two sides of the same coin? J Cogn Neurosci. 2007;19(3):433–44.

    PubMed  Google Scholar 

  238. Filippi R, Richardson FM, Dick F, Leech R, Green DW, Thomas MS, et al. The right posterior paravermis and the control of language interference. J Neurosci. 2011;31(29):10732–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Schmahmann JD. Dysmetria of thought. Clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci. 1998;2:362–70.

    CAS  PubMed  Google Scholar 

  240. Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguist. 2000;13:189–214.

    Google Scholar 

  241. Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20:236–60.

    PubMed  Google Scholar 

  242. Brodal P. The central nervous system. Oxford: Oxford University Press; 2010. p. 343–61.

    Google Scholar 

  243. Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2010;9:22–8.

    PubMed  Google Scholar 

  244. Küper M, Thürling M, Maderwald S, Ladd ME, Timmann D. Structural and functional magnetic resonance imaging of the human cerebellar nuclei. Cerebellum. 2012;11:314–24.

    PubMed  Google Scholar 

  245. Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, et al. Imaging the deep cerebellar nuclei in humans: a probabilistic atlas and normalization procedure. NeuroImage. 2011;54:1786–94.

    CAS  PubMed  Google Scholar 

  246. Maderwald S, Thürling M, Küper M, Theysohn N, Müller O, Beck A. Aurich V. Ladd ME: Timmann D. Direct visualization of cerebellar nuclei in patients with focal cerebellar lesions and its application for lesion-symptom mapping. NeuroImage; 2012 [Epub ahead of print].

    Google Scholar 

  247. Küper M, Thürling M, Stefanescu R, Maderwald S, Roths J, Elles HG, Ladd ME, Diedrichsen J, Timmann D. Evidence for a motor somatotopy in the cerebellar dentate nucleus-an fMRI study in humans. Hum Brain Mapp. 2011. [Epub ahead of print].

  248. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.

    PubMed  Google Scholar 

  249. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the processing of single words. J Cognit Neurosci. 1989;1:153–70.

    CAS  Google Scholar 

  250. Raichle ME, Fiez JA, Videen TO, MacLeod AM, Pardo JV, Fox PT, et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex. 1994;4:8–26.

    CAS  PubMed  Google Scholar 

  251. Lechtenberg R, Gilman S. Speech disorders in cerebellar disease. Ann Neurol. 1978;3:285–90.

    CAS  PubMed  Google Scholar 

  252. Stoodley CJ, Desmond JE, & Schmahmann JD. Functional topography of the human cerebellum revealed by functional neuroimaging studies. Tijdschrift. Jaartal; in Press.

  253. Schmahmann JD. The cerebellar cognitive affective syndrome: clinical correlations of the dysmetria of thought hypothesis. Int Rev Psychiatr. 2001;13:313–22.

    Google Scholar 

  254. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsych Clin N. 2004;16:367–78.

    Google Scholar 

  255. Stoodley CJ, Stein JF. Cerebellar function in developmental dyslexia. Cerebellum. 2013;12(2):267–76.

    PubMed  Google Scholar 

  256. Courchesne E, Allen G. Prediction and preparation, fundamental functions of the cerebellum. Learn Memory. 1997;4(1):1–35.

    CAS  Google Scholar 

  257. Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann NY Acad Sci. 2002;978:302–17.

    PubMed  Google Scholar 

  258. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cognitive Neurosci. 2009;22(11):2663–76.

    Google Scholar 

  259. Frings M, Dimitrova A, Schorn CF, Elles HG, Hein-Kropp C, Gizewski ER, et al. Cerebellar involvement in verb generation: an fMRI study. Neurosci Lett. 2006;409:19–23.

    CAS  PubMed  Google Scholar 

  260. Schmahmann JD, Doyon J, Toga A, Petrides M, Evans A. MRI Atlas of the Human Cerebellum. San Diego: Academic Press; 2000.

    Google Scholar 

  261. Schmahmann JD, Macmore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162:852–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. NeuroImage. 2009;46:39–46.

    PubMed  Google Scholar 

  263. Murdoch BE, Chenery HJ, Stokes PD, Hardcastle WJ. Respiratory kinematics in speakers with cerebellar disease. J Speech Hear Res. 1991;34:768–80.

    CAS  PubMed  Google Scholar 

  264. Cannito MP, Marquardt TP. Ataxic dysarthria. In: McNeil MR, editor. Clinical management of sensorimotor speech disorders. New York: Thieme; 2009. p. 132–51.

    Google Scholar 

  265. Kent RD, Kent JF, Duffy JR, Thomas JE, Weismer G, Stuntebeck S. Ataxic dysarthria. J Speech Lang Hear R. 2000;43:1275–89.

    CAS  Google Scholar 

  266. Ogar J, Slama H, Dronkers N, Amici S, Gorno-Tempini ML. Apraxia of speech: an overview. Neurocase. 2005;11:427–32.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by NIH grants K01 DA0304425 (Dr. Marvel) and R01 AA018694 (Dr. Desmond) and by DFG TI 239/9-1. The editorial assistance of Mrs. Tine D’aes is greatly acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mariën.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariën, P., Ackermann, H., Adamaszek, M. et al. Consensus Paper: Language and the Cerebellum: an Ongoing Enigma. Cerebellum 13, 386–410 (2014). https://doi.org/10.1007/s12311-013-0540-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0540-5

Keywords

Navigation