Skip to main content
Log in

MRI Shows a Region-Specific Pattern of Atrophy in Spinocerebellar Ataxia Type 2

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In this study, we used manual delineation of high-resolution magnetic resonance imaging (MRI) to determine the spatial and temporal characteristics of the cerebellar atrophy in spinocerebellar ataxia type 2 (SCA2). Ten subjects with SCA2 were compared to ten controls. The volume of the pons, the total cerebellum, and the individual cerebellar lobules were calculated via manual delineation of structural MRI. SCA2 showed substantial global atrophy of the cerebellum. Furthermore, the degeneration was lobule specific, selectively affecting the anterior lobe, VI, Crus I, Crus II, VIII, uvula, corpus medullare, and pons, while sparing VIIB, tonsil/paraflocculus, flocculus, declive, tuber/folium, pyramis, and nodulus. The temporal characteristics differed in each cerebellar subregion: (1) duration of disease: Crus I, VIIB, VIII, uvula, corpus medullare, pons, and the total cerebellar volume correlated with the duration of disease; (2) age: VI, Crus II, and flocculus correlated with age in control subjects; and (3) clinical scores: VI, Crus I, VIIB, VIII, corpus medullare, pons, and the total cerebellar volume correlated with clinical scores in SCA2. No correlations were found with the age of onset. Our extrapolated volumes at the onset of symptoms suggest that neurodegeneration may be present even during the presymptomatic stages of disease. The spatial and temporal characteristics of the cerebellar degeneration in SCA2 are region specific. Furthermore, our findings suggest the presence of presymptomatic atrophy and a possible developmental component to the mechanisms of pathogenesis underlying SCA2. Our findings further suggest that volumetric analysis may aid in the development of a non-invasive, quantitative biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Manto M-U, Pandolfo M. The cerebellum and its disorders. Cambridge University Press; 2002.

  2. Gispert S, Twells R, Orozco G, Brice A, Weber J, Heredero L, et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1. Nat Genet. 1993;4(3):295–9.

    Article  PubMed  CAS  Google Scholar 

  3. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14(3):285–91.

    Article  PubMed  CAS  Google Scholar 

  4. Shibata H, Huynh DP, Pulst SM. A novel protein with RNA-binding motifs interacts with ataxin-2. Hum Mol Genet. 2000;9(9):1303–13.

    Article  PubMed  CAS  Google Scholar 

  5. Viscomi MT, Florenzano F, Amadio S, Bernardi G, Molinari M. Partial resistance of ataxin-2-containing olivary and pontine neurons to axotomy-induced degeneration. Brain Res Bull. 2005;66(3):212–21.

    Article  PubMed  CAS  Google Scholar 

  6. Velázquez-Pérez L, Seifried C, Abele M, Wirjatijasa F, Rodríguez-Labrada R, Santos-Falcón N, et al. Saccade velocity is reduced in presymptomatic spinocerebellar ataxia type 2. Clin Neurophysiol. 2009;120(3):632–5.

    Article  PubMed  Google Scholar 

  7. Inagaki A, Iida A, Matsubara M, Inagaki H. Positron emission tomography and magnetic resonance imaging in spinocerebellar ataxia type 2: a study of symptomatic and asymptomatic individuals. Eur J Neurol. 2005;12(9):725–8.

    Article  PubMed  CAS  Google Scholar 

  8. Moretti P, Blazo M, Garcia L, Armstrong D, Lewis RA, Roa B, et al. Spinocerebellar ataxia type 2 (SCA2) presenting with ophthalmoplegia and developmental delay in infancy. Am J Med Genet A. 2004;124A(4):392–6.

    Article  PubMed  Google Scholar 

  9. Kiehl TR, Shibata H, Pulst SM. The ortholog of human ataxin-2 is essential for early embryonic patterning in C. elegans. J Mol Neurosci. 2000;15(3):231–41.

    Article  PubMed  CAS  Google Scholar 

  10. Della Nave R, Ginestroni A, Tessa C, Cosottini M, Giannelli M, Salvatore E, et al. Brain structural damage in spinocerebellar ataxia type 2. A voxel-based morphometry study. Mov Disord. 2008;23(6):899–903.

    Article  PubMed  Google Scholar 

  11. Federighi P, Cevenini G, Dotti MT, Rosini F, Pretegiani E, Federico A, et al. Differences in saccade dynamics between spinocerebellar ataxia 2 and late-onset cerebellar ataxias. Brain. 2011;134(3):879–91.

    Article  PubMed  Google Scholar 

  12. Mechelli A, Price CJ, Friston KJ, Ashburner J. Voxel-based morphometry applications of the human brain. Methods and Current Medical Imaging Reviews. 2005;1(2):1–9.

    Google Scholar 

  13. Ying SH, Choi SI, Perlman SL, Baloh RW, Zee DS, Toga AW. Pontine and cerebellar atrophy correlate with clinical disability in SCA2. Neurology. 2006;66(3):424–6.

    Article  PubMed  CAS  Google Scholar 

  14. Ying SH, Choi SI, Lee M, Perlman SL, Baloh RW, Toga AW, et al. Relative atrophy of the flocculus and ocular motor dysfunction in SCA2 and SCA6. Ann N Y Acad Sci. 2005;1039:430–5.

    Article  PubMed  CAS  Google Scholar 

  15. Subramony SH, May W, Lynch D, Gomez C, Fischbeck K, Hallett M, et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology. 2005;64(7):1261–2.

    Article  PubMed  CAS  Google Scholar 

  16. Schmahmann JD. MRI atlas of the human cerebellum. Academic Press; 2000.

  17. Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol. 1999;97(3):306–10.

    Article  PubMed  CAS  Google Scholar 

  18. Ying SH, Horn AKE, Geiner S, Wadia NH, Büttner-Ennever JA. Selective, circuit-wide sparing of floccular connections in hereditary olivopontine cerebellar atrophy with slow saccades. Prog Brain Res. 2008;171:583–6.

    Article  PubMed  Google Scholar 

  19. Luft AR, Skalej M, Schulz JB, Welte D, Kolb R, Bürk K, et al. Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cereb Cortex. 1999;9(7):712–21.

    Article  PubMed  CAS  Google Scholar 

  20. Varnäs K, Okugawa G, Hammarberg A, Nesvåg R, Rimol LM, Franck J, et al. Cerebellar volumes in men with schizophrenia and alcohol dependence. Psychiatry Clin Neurosci. 2007;61(3):326–9.

    Article  PubMed  Google Scholar 

  21. Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowicz M, Mariotti C, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. NeuroImage. 2010;49(1):158–68.

    Article  PubMed  Google Scholar 

  22. Fusco FR, Viscomi MT, Bernardi G, Molinari M. Localization of ataxin-2 within the cerebellar cortex of the rat. Brain Res Bull. 2001;56(3–4):343–7.

    Article  PubMed  CAS  Google Scholar 

  23. Ridha BH, Barnes J, Bartlett JW, Godbolt A, Pepple T, Rossor MN, et al. Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. Lancet Neurol. 2006;5(10):828–34.

    Article  PubMed  Google Scholar 

  24. Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt A, et al. Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology. 2004;63(1):66–72.

    PubMed  CAS  Google Scholar 

  25. Bang OY, Lee PH, Kim SY, Kim HJ, Huh K. Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol Neurosurg Psychiatr. 2004;75(10):1452–6.

    Article  PubMed  CAS  Google Scholar 

  26. Liu J, Tang T-S, Tu H, Nelson O, Herndon E, Huynh DP, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29(29):9148–62.

    Article  PubMed  CAS  Google Scholar 

  27. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1(1):11–21.

    Article  PubMed  CAS  Google Scholar 

  28. Matsumoto M, Nagata E. Type 1 inositol 1,4,5-trisphosphate receptor knock-out mice: their phenotypes and their meaning in neuroscience and clinical practice. J Mol Med. 1999;77(5):406–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Arnold-Chiari Foundation; the Robin Zee Fund; the Dana Foundation Program for Brain and Immuno-Imaging; the Research to Prevent Blindness Core Grant; and the National Institutes of Health [grant numbers 1K23EY015802, 5T32DC00023, 5T32MH019950, 5T32GM007057, R01 EY01849, 1R01NS056307, R01NS054255, 5RC1NS068897, 5R01EY019347, and 5R21NS059830]. We would also like to thank Elizabeth Murray for her technical assistance.

Conflict of Interest

There is no financial interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah H. Ying.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, B.C., Choi, S.I., Du, A.X. et al. MRI Shows a Region-Specific Pattern of Atrophy in Spinocerebellar Ataxia Type 2. Cerebellum 11, 272–279 (2012). https://doi.org/10.1007/s12311-011-0308-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0308-8

Keywords

Navigation