Skip to main content

Advertisement

Log in

Gene Transfer to the Cerebellum

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

There are several diseases for which gene transfer therapy to the cerebellum might be practicable. In these studies, we used recombinant Tag-deleted SV40-derived vectors (rSV40s) to study gene delivery targeting the cerebellum. These vectors transduce neurons and microglia very effectively in vitro and in vivo, and so we tested them to evaluate gene transfer to the cerebellum in vivo. Using a rSV40 vector carrying human immunodeficiency virus (HIV)-Nef with a C-terminal FLAG epitope, we characterized the distribution, duration, and cell types transduced. Rats received test and control vectors by stereotaxic injection into the cerebellum. Transgene expression was assessed 1, 2, and 4 weeks later by immunostaining of serial brain sections. FLAG epitope-expressing cells were seen, at all times after vector administration, principally detected in the Purkinje cells of the cerebellum, identified as immunopositive for calbindin. Occasional microglial cells were tranduced; transgene expression was not detected in astrocytes or oligodendrocytes. No inflammatory or other reaction was detected at any time. Thus, SV40-derived vectors can deliver effective, safe, and durable transgene expression to the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ito M. Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann NY Acad Sci. 2002;978:273–88.

    Article  PubMed  Google Scholar 

  2. Manto M, Marmolino D. Cerebellar ataxias. Curr Opin Neurol. 2009;22:419–29.

    Article  PubMed  Google Scholar 

  3. Koeppen AH. The hereditary ataxias. J Neuropathol Exp Neurol. 1998;57:531–43.

    Article  CAS  PubMed  Google Scholar 

  4. Underwood BR, Rubinsztein DC. Spinocerebellar ataxias caused by polyglutamine expansions: a review of therapeutic strategies. Cerebellum. 2008;7:215–21.

    Article  CAS  PubMed  Google Scholar 

  5. Strayer DS, Pomerantz RJ, Yu M, Rosenzweig M, Bouhamdan M, Yurasov S, et al. Efficient gene transfer to hematopoietic progenitor cells using SV40-derived vectors. Gene Ther. 2000;7:886–95.

    Article  CAS  PubMed  Google Scholar 

  6. Strayer DS. SV40 as an effective gene transfer vector in vivo. J Biol Chem. 1996;271:24741–6.

    CAS  PubMed  Google Scholar 

  7. Strayer DS, Kondo R, Milano J, Duan LX. Use of SV40-based vectors to transduce foreign genes to normal human peripheral blood mononuclear cells. Gene Ther. 1997;4:219–25.

    Article  CAS  PubMed  Google Scholar 

  8. Cordelier P, Calarota SA, Pomerantz RJ, Xiaoshan J, Strayer DS. Inhibition of HIV-1 in the central nervous system by IFN-alpha2 delivered by an SV40 vector. J Interferon Cytokine Res. 2003;23:477–88.

    Article  CAS  PubMed  Google Scholar 

  9. Cordelier P, Van Bockstaele E, Calarota SA, Strayer DS. Inhibiting AIDS in the central nervous system: gene delivery to protect neurons from HIV. Mol Ther. 2003;7:801–10.

    Article  CAS  PubMed  Google Scholar 

  10. Cordelier P, Strayer DS. Using gene delivery to protect HIV-susceptible CNS cells: inhibiting HIV replication in microglia. Virus Res. 2006;118:87–97.

    Article  CAS  PubMed  Google Scholar 

  11. Louboutin JP, Reyes BAS, Agrawal L, van Bockstaele EJ, Strayer DS. Strategies for CNS-directed gene delivery: in vivo gene transfer to the brain using SV40-derived vectors. Gene Ther. 2007;14:939–49.

    Article  CAS  PubMed  Google Scholar 

  12. Agrawal L, Louboutin JP, Reyes BAS, van Bockstaele EJ, Strayer DS. Antioxidant enzyme gene delivery to protect from HIV-1 gp120-induced neuronal apoptosis. Gene Ther. 2006;13:1645–56.

    Article  CAS  PubMed  Google Scholar 

  13. Agrawal L, Louboutin JP, Strayer DS. Preventing HIV-1 Tat-induced neuronal apoptosis using antioxidant enzymes: mechanistic and therapeutic implications. Virology. 2007;363:462–72.

    Article  CAS  PubMed  Google Scholar 

  14. Louboutin JP, Agrawal L, Reyes BAS, van Bockstaele EJ, Strayer DS. Protecting neurons from HIV-1 gp120-induced oxidant stress using both localized intracerebral and generalized intraventricular administration of antioxidant enzymes delivered by SV40-derived vectors. Gene Ther. 2007;14:1650–61.

    Article  CAS  PubMed  Google Scholar 

  15. Louboutin JP, Agrawal L, Reyes BAS, van Bockstaele EJ, Strayer DS. HIV-1 gp120 neurotoxicity proximally and at a distance from the point of exposure: protection by rSV40 delivery of antioxidant enzyme. Neurobiol Dis. 2009;34:462–76.

    Article  CAS  PubMed  Google Scholar 

  16. Strayer DS. Gene therapy using SV40-derived vectors: what does the future hold? J Cell Physiol. 1999;181:375–84.

    Article  CAS  PubMed  Google Scholar 

  17. McKee HJ, Strayer DS. Immune responses against SIV envelope glycoprotein, using recombinant SV40 as a vaccine delivery vector. Vaccine. 2002;20:3613–25.

    Article  CAS  PubMed  Google Scholar 

  18. Strayer DS, Lamothe M, Wei D, Milano J, Kondo R. Generation of recombinant SV40 vectors for gene transfer. SV40 protocols. In: Raptis L, editor. Methods in molecular biology, vol. 165. Totowa: Humana; 2001. p. 103–17.

    Google Scholar 

  19. Sauter BV, Parashar B, Chowdhury NR, Kadakol A, Ilan Y, Singh H, et al. A replication-deficient rSV40 mediates liver-directed gene transfer and a long-term amelioration of jaundice in Gunn rats. Gastroenterology. 2000;119:1348–57.

    Article  CAS  PubMed  Google Scholar 

  20. Paxinos G. Watson C. In: Paxinos G, Watson C, editors. The rat brain in stereotaxic coordinates. 2nd ed. New York: Academic; 1986.

    Google Scholar 

  21. Rouger K, Louboutin JP, Villanova M, Cherel Y, Fardeau M. X-linked vacuolated myopathy: TNF-alpha and IFN-gamma expression in muscle fibers with MHC class I on sarcolemma. Am J Pathol. 2001;158:355–9.

    CAS  PubMed  Google Scholar 

  22. Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992;116:201–11.

    CAS  PubMed  Google Scholar 

  23. Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T, Wiestler OD, et al. NeuN: a useful marker for diagnostic histopathology. J Histochem Cytochem. 1996;44:1167–71.

    CAS  PubMed  Google Scholar 

  24. Bigini P, Gardoni F, Barbera S, Cagnotto A, Fumagalli E, Longhi A, et al. Expression of AMPA and NMDA receptor subunits in the cervical spinal cord of wobbler mice. BMC Neurosci. 2006;7:71.

    Article  PubMed  Google Scholar 

  25. Morinville A, Cahill CM, Aibak H, Rymar VV, Pradhan A, Hoffert C, et al. Morphine-induced changes in delta opioid receptor trafficking are linked to somatosensory processing in the rat spinal cord. J Neurosci. 2004;24:5549–59.

    Article  CAS  PubMed  Google Scholar 

  26. Nikonov AA, Finger TE, Caprio J. Beyond the olfactory bulb: an odotopic map in the forebrain. Proc Natl Acad Sci U S A. 2005;102:18688–93.

    Article  CAS  PubMed  Google Scholar 

  27. Louboutin JP, Liu B, Reyes BAS, Van Bockstaele EJ, Strayer DS. Rat bone marrow transduced in situ by rSV40 vectors differentiate into multiple central nervous cell lineages. Stem Cells. 2006;24:2801–9.

    Article  CAS  PubMed  Google Scholar 

  28. Mandel RJ, Rendahl KG, Spratt SK, Snyder RO, Cohen LK, Leff SE. Characterization of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase I in a rat model of Parkinson’s disease. J Neurosci. 1998;18:4271–84.

    CAS  PubMed  Google Scholar 

  29. Betz AL, Shakui P, Davidson BL. Gene transfer to rodent brain with recombinant adenoviral vectors: effects of infusion parameters, infectious titer, and virus concentration on transduction volume. Exp Neurol. 1998;150:136–42.

    Article  CAS  PubMed  Google Scholar 

  30. Akli S, Caillaud C, Vigne E, Stratford-Perricaudet LD, Poenaru L, Perricaudet M, et al. Transfer of a foreign gene into the brain using adenovirus vectors. Nat Genet. 1993;3:224–8.

    Article  CAS  PubMed  Google Scholar 

  31. Wu P, Phillips MI, Bui J, Terwilliger EF. Adeno-associated virus vector-mediated transgene integration into neurons and other nondividing cell targets. J Virol. 1998;72:5919–26.

    CAS  PubMed  Google Scholar 

  32. McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ. Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res. 1996;713:99–107.

    Article  CAS  PubMed  Google Scholar 

  33. Naldini L, Blomer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A. 1996;93:11382–8.

    Article  CAS  PubMed  Google Scholar 

  34. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272:263–7.

    Article  CAS  PubMed  Google Scholar 

  35. Watson DJ, Kobinger GP, Passini MA, Wilson JM, Wolfe JH. Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther. 2002;5:528–37.

    Article  CAS  PubMed  Google Scholar 

  36. Latchman DS, Coffin RS. Viral vectors for gene therapy in Parkinson’s disease. Rev Neurosci. 2001;12:69–78.

    CAS  PubMed  Google Scholar 

  37. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science. 2000;290:767–73.

    Article  CAS  PubMed  Google Scholar 

  38. Bosch A, Perret E, Desmaris N, Trono D, Heard JM. Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum Gene Ther. 2000;11:1139–50.

    Article  CAS  PubMed  Google Scholar 

  39. Daly TM, Vogler C, Levy B, Haskins ME, Sands MS. Neonatal gene transfer leads to widespread correction of pathology in a murine model of lysosomal storage disease. Proc Natl Acad Sci U S A. 1999;96:2296–300.

    Article  CAS  PubMed  Google Scholar 

  40. Taylor RM, Wolfe JH. Decreased lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of beta-glucuronidase. Nat Med. 1997;3:771–4.

    Article  CAS  PubMed  Google Scholar 

  41. Skorupa AF, Fisher KJ, Wilson JM, Parente MK, Wolfe JH. Sustained production of beta-glucuronidase from localized sites after AAV vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in mucopolysaccharidosis VII mice. Exp Neurol. 1999;160:17–27.

    Article  CAS  PubMed  Google Scholar 

  42. Hannas-Djebbara Z, Didier-Bazs M, Sacchettoni S, Prod’hon C, Jouvet M, Belin MF, et al. Transgene expression of plasmid DNAs directed by viral or neural promoters in the rat brain. Brain Res Mol Brain Res. 1997;46:91–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hashimoto M, Aruga J, Hosoya Y, Kanegae Y, Saito I, Mikoshiba K. A neural cell-type-specific expression system using recombinant adenovirus vectors. Hum Gene Ther. 1996;7:149–58.

    Article  CAS  PubMed  Google Scholar 

  44. Terashima T, Miwa A, Kanegae Y, Saito I, Okado H. Retrograde and anterograde labeling of cerebellar afferent projection by the injection of recombinant adenoviral vectors into the mouse cerebellar cortex. Anat Embryol. 1997;196:363–82.

    Article  CAS  PubMed  Google Scholar 

  45. Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, et al. Glia-synapse interaction through Ca2 + -permeable AMPA receptors in Bergmann glia. Science. 2001;292:926–9.

    Article  CAS  PubMed  Google Scholar 

  46. Yang Y, Haecker SE, Su Q, Wilson JM. Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum Mol Genet. 1996;5:1703–12.

    Article  CAS  PubMed  Google Scholar 

  47. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA, et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A. 2000;97:3428–32.

    Article  CAS  PubMed  Google Scholar 

  48. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther. 2004;10:302–17.

    Article  CAS  PubMed  Google Scholar 

  49. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med. 2004;10:816–20.

    Article  CAS  PubMed  Google Scholar 

  50. Alisky JM, Hughes SM, Sauter SL, Jolly D, Dubensky TW, Staber PD, et al. Transduction of murine cerebellar neurons with recombinant FIV and AAV5 vectors. NeuroReport. 2000;11:2669–73.

    Article  CAS  PubMed  Google Scholar 

  51. Kaemmerer WF, Reddy RG, Warlick CA, Hartung SD, Mclvor RS, Low WC. In vivo transduction of cerebellar Purkinje cells using adeno-associated virus vectors. Mol Ther. 2000;2:446–57.

    Article  CAS  PubMed  Google Scholar 

  52. Belur LR, Kaemmerer WF, McIvor RS, Low WC. Adeno-associated virus type 2 vectors: transduction and long-term expression in cerebellar Purkinje cells in vivo is mediated by the fibroblast growth factor receptor 1. Arch Virol. 2008;153:2107–10.

    Article  CAS  PubMed  Google Scholar 

  53. Hirai H. Progress in transduction of cerebellar Purkinje cells in vivo using viral vectors. Cerebellum. 2008;7:273–8.

    Article  CAS  PubMed  Google Scholar 

  54. Torashima T, Okoyama S, Nishizaki T, Hirai H. In vivo transduction of murine cerebellar Purkinje cells by HIV-derived lentiviral vectors. Brain Res. 2006;1082:11–22.

    Article  CAS  PubMed  Google Scholar 

  55. Torashima T, Yamada N, Itoh M, Yamamoto A, Hirai H. Exposure of lentiviral vectors to subneutral pH shifts the tropism from Purkinje cells to Bergman glia. Eur J Neurosci. 2006;24:371–80.

    Article  PubMed  Google Scholar 

  56. Croci C, Fasano S, Superchi D, Perani L, Martellosio A, Brambilla R, et al. Cerebellar neurons and glial cells are transducible by lentiviral vectors without decrease of cerebellar functions. Dev Neurosci. 2006;28:216–21.

    Article  CAS  PubMed  Google Scholar 

  57. Agudo M, Trejo JL, Lim F, Avila J, Torres-Aleman I, Diaz-Nido J, et al. Highly efficient and specific gene transfer to Purkinje cells in vivo using a herpes simplex virus 1 amplicon. Hum Gene Ther. 2002;13:665–74.

    Article  CAS  PubMed  Google Scholar 

  58. Duan YY, Wu J, Zhu JL, Liu SL, Ozaki I, Strayer DS, et al. Gene therapy for human alpha1-antitrypsin deficiency in an animal model using SV40-derived vectors. Gastroenterology. 2004;127:1222–32.

    Article  CAS  PubMed  Google Scholar 

  59. Strayer DS, Milano J. SV40 mediates stable gene transfer in vivo. Gene Ther. 1996;3:581–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) grant MH70287.

Conflicts of interest

The authors of this manuscript have no potential conflict of interest in the submission. The manuscript has not been published before and is not under consideration anywhere else. The publication has been approved by all co-authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Louboutin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louboutin, JP., Reyes, B.A.S., Van Bockstaele, E.J. et al. Gene Transfer to the Cerebellum. Cerebellum 9, 587–597 (2010). https://doi.org/10.1007/s12311-010-0202-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0202-9

Keywords

Navigation