Skip to main content

Advertisement

Log in

Calcium-independent phospholipase A2 mediates store-operated calcium entry in rat cerebellar granule cells

  • Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Store-operated Ca2+ entry (SOCE) has been extensively studied in non-neuronal cells, such as glial cells and smooth muscle cells, in which Ca2+-independent phospholipase A2 (iPLA2) has been shown to play a key role in the regulation of SOCE channels. In the present study, we have investigated the role of iPLA2 for store-operated Ca2+ entry in rat cerebellar granule neurons in acute brain slices using confocal Ca2+ imaging. Depletion of Ca2+ stores by cyclopiazonic acid (CPA) induced a Ca2+ influx, which could be inhibited by SOCE channel blockers 2-aminoethoxy-diphenylborate (2-APB) and 3,5-bistrifluoromethyl pyrazole derivative (BTP2), but not by the voltage-operated Ca2+ channel blocker diltiazem and by the Na+ channel blocker tetrodotoxin. The inhibitors of iPLA2, bromoenol lactone (BEL) and 1,1,1-trifluoro-2-heptadecanone, and the selective suppression of iPLA2 expression by antisense oligodeoxynucleotides, inhibited CPA-induced Ca2+ influx. Calmidazolium, which relieves the block of inhibitory calmodulin from iPLA2, elicited a Ca2+ influx similar to CPA-induced Ca2+ entry. The product of iPLA2, lysophosphatidylinositol, elicited a 2-APB- and BTP2-sensitive, but BEL-insensitive, Ca2+ influx. Spontaneous Ca2+ oscillations in granule cells in acute brain slices were reduced after inhibiting iPLA2 activity or by blocking SOCE channels. The results suggest that depletion of Ca2+ stores activates iPLA2 to trigger Ca2+ influx by the formation of lysophospholipids in these neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berridge MJ, Lipp P, Bootman MD. The versatility & universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21.

    Article  PubMed  CAS  Google Scholar 

  2. Parekh AB, Putney JW Jr. Store-operated calcium channels. Physiol Rev. 2005;85:757–810.

    Article  PubMed  CAS  Google Scholar 

  3. Smani T, Zakharov SI, Leno E, Csutora P, Trepakova ES, Bolotina VM. Ca2+-independent phospholipase A2 is a novel determinant of store-operated Ca2+ entry. J Biol Chem. 2003;278:11909–15.

    Article  PubMed  CAS  Google Scholar 

  4. Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM. A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol. 2004;6:113–20.

    Article  PubMed  CAS  Google Scholar 

  5. Singaravelu K, Lohr C, Deitmer JW. Regulation of storeoperated calcium entry by calcium-independent phospholipase A2 in rat cerebellar astrocytes. J Neurosci. 2006;26:9579–92.

    Article  PubMed  CAS  Google Scholar 

  6. Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994;269:13057–60.

    PubMed  CAS  Google Scholar 

  7. Cummings BS, McHowat J, Schnellmann RG. Phospholipase A2s in cell injury and death. J Pharmacol Exp Ther. 2000;294:793–9.

    PubMed  CAS  Google Scholar 

  8. Murakami M, Kudo I. Phospholipase A2. J Biochem (Tokyo). 2002;131:285–92.

    CAS  Google Scholar 

  9. Farooqui AA, Yang HC, Rosenberger TA, Horrocks LA. Phospholipase A2 and its role in brain tissue. J Neurochem. 1997;69:889–901.

    PubMed  CAS  Google Scholar 

  10. Balboa MA, Varela-Nieto I, Killermann LK, Dennis EA. Expression and function of phospholipase A2 in brain. FEBS Lett. 2002;531:12–7.

    Article  PubMed  CAS  Google Scholar 

  11. Sun GY, Xu J, Jensen MD, Simonyi A. Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res. 2004;45:205–13.

    Article  PubMed  CAS  Google Scholar 

  12. Wolf MJ, Izumi Y, Zorumski CF, Gross RW. Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett. 1995;377:358–62.

    Article  PubMed  CAS  Google Scholar 

  13. Martel MA, Patenaude C, Menard C, Alaux S, Cummings BS, Massicotte G. A novel role for calciumindependent phospholipase A2 in alpha-amino-3-hydroxy-5-methylisoxazole-propionate receptor regulation during longterm potentiation. Eur J Neurosci. 2006;23:505–13.

    Article  PubMed  Google Scholar 

  14. Massicotte G. Modification of glutamate receptors by phospholipase A2: Its role in adaptive neural plasticity. Cell Mol Life Sci. 2000;57:1542–50.

    Article  PubMed  CAS  Google Scholar 

  15. Schaeffer EL, Gattaz WF. Inhibition of calcium-independent phospholipase A2 activity in rat hippocampus impairs acquisition of short- & long-term memory. Psychopharmacology (Berl). 2005;181:392–400.

    Article  CAS  Google Scholar 

  16. Adibhatla RM, Hatcher JF. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med. 2006;40:376–87.

    Article  CAS  Google Scholar 

  17. Phillis JW, O’Regan MH. The role of phospholipases, cyclooxygenases, & lipoxygenases in cerebral ischemic/traumatic injuries. Crit Rev Neurobiol. 2003;15:61–90.

    Article  PubMed  CAS  Google Scholar 

  18. Bazan NG, Palacios-Pelaez R, Lukiw WJ. Hypoxia signalling to genes: Significance in Alzheimer’s disease. Mol Neurobiol. 2002;26:283–98.

    Article  PubMed  CAS  Google Scholar 

  19. Morgan NV, Westaway SK, Morton JE, Gregory A, Gissen P, Sonek S, et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet. 2006;38:752–4.

    Article  PubMed  CAS  Google Scholar 

  20. Zufall F, Leinders-Zufall T, Greer CA. Amplification of odor-induced Ca2+ transients by store-operated Ca2+ release and its role in olfactory signal transduction. J Neurophysiol. 2000;83:501–12.

    PubMed  CAS  Google Scholar 

  21. Emptage NJ, Reid CA, Fine A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, storeoperated Ca2+ entry, and spontaneous transmitter release. Neuron. 2001;29:197–208.

    Article  PubMed  CAS  Google Scholar 

  22. Edwards FA, Konnerth A, Sakmann B, Takahashi T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 1989;414:600–12.

    Article  PubMed  CAS  Google Scholar 

  23. Stewart RR, Bossu JL, Muzet M, Dupont, JL, Feltz A. Voltage-activated ionic currents in differentiating rat cerebellar granule neurons cultured from the external germinal layer. J Neurobiol. 1995;28:419–32.

    Article  PubMed  CAS  Google Scholar 

  24. Balsinde J, Balboa MA, Dennis EA. Antisense inhibition of Group VI Ca2+-independent phospholipase A2 blocks phospholipid fatty acid remodeling in murine P388D macrophages. J Biol Chem. 1997;272:29317–21.

    Article  PubMed  CAS  Google Scholar 

  25. Dallwig R, Deitmer JW. Cell-type specific calcium responses in acute rat hippocampal slices. J Neurosci Meth. 2002;116:77–87.

    Article  CAS  Google Scholar 

  26. Beck A, Zur Nieden R, Schneider HP, Deitmer JW. Calcium release from intracellular stores in rodent astrocytes in situ. Cell Calcium. 2004;35:47–58.

    Article  PubMed  CAS  Google Scholar 

  27. Prakriya M, Lewis RS. Potentiation & inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol. 2001;536:3–19.

    Article  PubMed  CAS  Google Scholar 

  28. Zitt C, Strauss B, Schwarz EC, Spaeth N, Rast G, Hatzelmann A, Hoth M. Potent inhibition of Ca2+ releaseactivated Ca2+ channels and T-lymphocyte activation by the pyrazole derivative BTP2. J Biol Chem. 2004;279: 12427–37.

    Article  PubMed  CAS  Google Scholar 

  29. Ackermann EJ, Conde-Frieboes K, Dennis EA. Inhibition of macrophage Ca2+-independent phospholipase A2 by bromoenol lactone and trifluoromethyl ketones. J Biol Chem. 1995;270:445–50.

    Article  PubMed  CAS  Google Scholar 

  30. Balsinde J, Dennis EA. Bromoenol lactone inhibits magnesium-dependent phosphatidate phosphohydrolase and blocks triacylglycerol biosynthesis in mouse P388D1 macrophages. J Biol Chem. 1996;271:31937–41.

    Article  PubMed  CAS  Google Scholar 

  31. Fuentes L, Perez R, Nieto ML, Balsinde J, Balboa MA. Bromoenol lactone promotes cell death by a mechanism involving phosphatidate phosphohydrolase-1 rather than calcium-independent phospholipase A2. J Biol Chem. 2003;278:44683–90.

    Article  PubMed  CAS  Google Scholar 

  32. Cummings BS, McHowat J, Schnellmann RG. Role of an endoplasmic reticulum Ca2+-independent phospholipase A2 in oxidant-induced renal cell death. Am J Physiol Renal Physiol. 2002;283:F492–8.

    PubMed  CAS  Google Scholar 

  33. Kirischuk S, Viotenko N, Kostyuk P, Verkhratsky A. Calcium signalling in granule neurones studied in cerebellar slices. Cell Calcium. 1996;19:59–71.

    Article  PubMed  CAS  Google Scholar 

  34. Irving AJ, Collingridge GL, Schofield JG. Interactions between Ca2+ mobilizing mechanisms in cultured rat cerebellar granule cells. J Physiol. 1992;456:667–80.

    PubMed  CAS  Google Scholar 

  35. Haunso A, Simpson J, Antoni FA. Small ligands modulating the activity of mammalian adenylyl cyclases: A novel mode of inhibition by calmidazolium. Mol Pharmacol. 2003;63:624–31.

    Article  PubMed  CAS  Google Scholar 

  36. Tsien RW, Tsien RY. Calcium channels, stores and oscillations. Annu Rev Cell Biol. 1990;6:715–60.

    Article  PubMed  CAS  Google Scholar 

  37. Sergeeva M, Strokin M, Wang H, Ubl JJ, Reiser G. Arachidonic acid in astrocytes blocks Ca2+ oscillations by inhibiting store-operated Ca2+ entry, and causes delayed Ca2+ influx. Cell Calcium. 2003;33:283–92.

    Article  PubMed  CAS  Google Scholar 

  38. Bird GS, Putney JW Jr. Capacitative calcium entry supports calcium oscillations in human embryonic kidney cells. J Physiol. 2005;562:697–706.

    Article  PubMed  CAS  Google Scholar 

  39. Irving AJ, Collingridge GL, Schofield JG. Interactions between Ca2+ mobilization mechanisms in cultured rat cerebellar granule cells. J Physiol. 1992;456:667–80.

    PubMed  CAS  Google Scholar 

  40. Farooqui AA, Ong WY, Horrocks LA. Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res. 2004;29:1961–77.

    Article  PubMed  CAS  Google Scholar 

  41. Gross RW, Rudolph AE, Wang J, Sommers CD, Wolf MJ. Nitric oxide activates the glucose-dependent mobilization of arachidonic acid in a macrophage-like cell line (RAW 264.7) that is largely mediated by calcium-independent phospholipase A2. J Biol Chem. 1995;270:14855–8.

    Article  PubMed  CAS  Google Scholar 

  42. Négre-Aminou P, Nemenoff RA, Wood MR, de la Houssaye BA, Pfenninger KH. Characterization of phospholipase A2 activity enriched in the nerve growth cone. J Neurochem. 1996;67:2599–608.

    Article  PubMed  Google Scholar 

  43. Yang HC, Mosior M, Johnson CA, Chen Y, Dennis EA. Group-specific assays that distinguish between the four major types of mammalian phospholipase A2. Anal Biochem. 1999;269:278–88.

    Article  PubMed  CAS  Google Scholar 

  44. Shirai Y, Ito M. Specific differential expression of phospholipase A2 subtypes in rat cerebellum. J Neurocytol. 2004;33:297–307.

    Article  PubMed  CAS  Google Scholar 

  45. Wolf MJ, Gross RW. The calcium-dependent association & functional coupling of calmodulin with myocardial phospholipase A2. Implications for cardiac cycle-dependent alterations in phospholipolysis. J Biol Chem. 1996;271:20989–92.

    Article  PubMed  CAS  Google Scholar 

  46. Wolf MJ, Wang J, Turk J, Gross RW. Depletion of intracellular calcium stores activates smooth muscle cell calcium-independent phospholipase A2. A novel mechanism underlying arachidonic acid mobilization. J Biol Chem. 1997;272:1522–6.

    Article  PubMed  CAS  Google Scholar 

  47. Gross RW. Activation of calcium-independent phospholipase A2 by depletion of internal calcium stores. Biochem Soc Trans. 1998;26:345–9.

    PubMed  CAS  Google Scholar 

  48. Randriamampita C, Tsien RY. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature. 1993;364:809–14.

    Article  PubMed  CAS  Google Scholar 

  49. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol. 2005;169:435–45.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 2005;437:902–5.

    Article  PubMed  CAS  Google Scholar 

  51. Vanden Abeele F, Lemonnier L, Thebault S, Lepage G, Parys JB, Shuba Y, et al. Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J Biol Chem. 2004;279:30326–37.

    Article  PubMed  CAS  Google Scholar 

  52. Flourakis M, Van Coppenolle F, Lehen’Kyi V, Beck B, Skryma R, Prevarskaya N. Passive calcium leak via translocon is a first step for iPLA2-pathway regulated store operated channels activation. FASEB J. 2006;20:1215–7.

    Article  PubMed  CAS  Google Scholar 

  53. Boyd DF, Millar JA, Watkins CS, Mathie A. The role of Ca2+ stores in the muscarinic inhibition of the K+ current IK(SO) in neonatal rat cerebellar granule cells. J Physiol. 2000;529:321–31.

    Article  PubMed  CAS  Google Scholar 

  54. Pinilla PJ, Hernandez AT, Camello MC, Pozo MJ, Toescu EC, Camello PJ. Non-stimulated Ca2+ leak pathway in cerebellar granule neurons. Biochem Pharmacol. 2005;70:786–93.

    Article  PubMed  CAS  Google Scholar 

  55. Irving AJ, Collingridge GL. A characterization of muscarinic receptor-mediated intracellular Ca2+ mobilization in cultured rat hippocampal neurones. J Physiol. 1998;511:747–59.

    Article  PubMed  CAS  Google Scholar 

  56. Mendes CT, Gattaz WF, Schaeffer EL, Forlenza OV. Modulation of phospholipase A2 activity in primary cultures of rat cortical neurons. J Neural Transm. 2005;112:1297–308.

    Article  PubMed  CAS  Google Scholar 

  57. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441:179–85.

    Article  PubMed  CAS  Google Scholar 

  58. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science. 2006;312:1220–3.

    Article  PubMed  CAS  Google Scholar 

  59. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol. 2005;8:771–3.

    Article  CAS  Google Scholar 

  60. Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL. Orail & STIM reconstitute storeoperated calcium channel function. J Biol Chem. 2006;281:20661–5.

    Article  PubMed  CAS  Google Scholar 

  61. Lawrie AM, Graham ME, Thorn P, Gallacher DV, Burgoyne RD. Synchronous calcium oscillations in cerebellar granule cells in culture mediated by NMDA receptors. Neuroreport. 1993;4:539–42.

    Article  PubMed  CAS  Google Scholar 

  62. Nunez L, Sanchez A, Fonteri RI, Garcia-Sancho J. Mechanisms for synchronous calcium oscillations in cultured rat cerebellar neurons. Eur J Neurosci. 1996;8:192–201.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim W. Deitmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singaravelu, K., Lohr, C. & Deitmer, J.W. Calcium-independent phospholipase A2 mediates store-operated calcium entry in rat cerebellar granule cells. Cerebellum 7, 467–481 (2008). https://doi.org/10.1007/s12311-008-0050-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0050-z

Key words

Navigation