Skip to main content

Advertisement

Log in

Microdialysis Combined with Proteomics for Protein Identification in Breast Tumor Microenvironment In Vivo

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

Tumor microenvironment constitutes a reservoir for proteins released from tumor cells and the host, which can contribute significantly to tumor growth and invasion. This study aims to apply a method of combining in vivo microdialysis and proteomics to identify proteins in mammary tumor interstitial fluids, a major component of tumor microenvironment. In vivo microdialysis was performed in polyomavirus middle T antigen (PyVmT) transgenic mouse mammary tumors and age-matched control wild-type mammary glands. Over four hundred proteins were identified from the microdialysis perfusates, using the Multidimensional Protein Identification Technology. Osteopontin (OPN) is one of the proteins overexpressed in breast tumor perfusates, as confirmed with immunoassays. OPN was also found to be present in tumor-associated stroma in both PyVmT and human breast tumors, using immunohistochemistry. Specifically, fibroblasts were further shown to express OPN at both mRNA and protein levels. In vitro assays showed that OPN can stimulate PyVmT breast carcinoma cell proliferation and migration. Finally, the expression of OPN was significantly higher in the peripheral blood of mice bearing breast tumors, compared to wild-type mice. Overall, microdialysis combined with proteomics is a unique technique for identifying proteins in a tumor microenvironment in vivo. Mammary fibroblasts can secrete OPN, and its overexpression in mammary tumor microenvironment may contribute significantly to mammary tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CM:

Conditioned media

ECM:

Extracellular matrix

ESI-MS/MS:

Electrospray ionization tandem mass spectrometry

MIF:

Macrophage migration inhibitory factor

MMTV-PyVmT:

Mouse mammary tumor virus-polyomavirus middle T antigen

MudPIT:

Multidimensional protein identification technology

MW:

Molecular weight

OPN:

Osteopontin

SPARC:

Secreted acidic cysteine rich glycoprotein

TIMP2:

Tissue inhibitor of metalloproteinase 2

TSP-1:

Thrombospondin 1

uPA:

Urokinase-type plasminogen activator

References

  1. Bhowmick NA, Moses HL (2005) Curr Opin Genet Dev 15:97–101

    Article  PubMed  CAS  Google Scholar 

  2. Bissell MJ, Radisky D (2001) Nature reviews. Cancer 1:46–54

    PubMed  CAS  Google Scholar 

  3. Ronnov-Jessen L, Petersen OW, Bissell MJ (1996) Physiol Rev 76:69–125

    PubMed  CAS  Google Scholar 

  4. Hu M, Polyak K (2008) Curr Opin Genet Dev 18:27–34

    Article  PubMed  CAS  Google Scholar 

  5. Joyce JA (2005) Cancer Cell 7:513–520

    Article  PubMed  CAS  Google Scholar 

  6. Gaddum J (1961) J Physiol 155:1–2

    Google Scholar 

  7. Fillenz M (2005) Neurosci Biobehav Rev 29:949–962

    Article  PubMed  CAS  Google Scholar 

  8. Hocht C, Opezzo JA, Taira CA (2007) J Pharmacol Toxicol Methods 55:3–15

    Article  PubMed  Google Scholar 

  9. Plock N, Kloft C (2005) Eur J Pharm Sci 25:1–24

    Article  PubMed  CAS  Google Scholar 

  10. Ault JM, Riley CM, Meltzer NM, Lunte CE (1994) Pharm Res 11:1631–1639

    Article  PubMed  CAS  Google Scholar 

  11. Dabrosin C, Margetts PJ, Gauldie J (2003) Int J Cancer 107:535–540

    Article  PubMed  CAS  Google Scholar 

  12. Dabrosin C, Johansson A-C, Ollinger K (2004) Breast Cancer Res Treat 85:229–238

    Article  PubMed  CAS  Google Scholar 

  13. Bendrik C, Dabrosin C (2009) J Immunol 182:371–378

    PubMed  CAS  Google Scholar 

  14. Washburn MP, Wolters D, Yates JR 3rd (2001) Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  15. Cantin GT, Yi W, Lu B, Park SK, Xu T et al (2008) J Proteome Res 7:1346–1351

    Article  PubMed  CAS  Google Scholar 

  16. Sodek KL, Evangelou AI, Ignatchenko A, Agochiya M, Brown TJ et al (2008) Mol Biosyst 4:762–773

    Article  PubMed  CAS  Google Scholar 

  17. Guy CT, Cardiff RD, Muller WJ (1992) Mol Cell Biol 12:954–961

    PubMed  CAS  Google Scholar 

  18. Amanchy R, Kalume DE, Pandey A (2005) Sci STKE 2005:pl2

    Article  PubMed  Google Scholar 

  19. Link AJ (2002) Trends Biotech 20:S8–S13

    Article  CAS  Google Scholar 

  20. Eng JK, McCormack AL, Yates JR III (1994) J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  21. Sadygov RG, Eng J, Durr E, Saraf A, McDonald H et al (2002) J Proteome Res 1:211–215

    Article  PubMed  CAS  Google Scholar 

  22. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Anal Chem 74:5383–5392

    Article  PubMed  CAS  Google Scholar 

  23. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) Anal Chem 75:4646–4658

    Article  PubMed  CAS  Google Scholar 

  24. Spain M, McDade R (2007) IDrugs 10:633–635

    PubMed  Google Scholar 

  25. Bertenshaw GP, Yip P, Seshaiah P, Zhao J, Chen TH et al (2008) Cancer Epidemiol Biomarkers Prev 17:2872–2881

    Article  PubMed  CAS  Google Scholar 

  26. Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J et al (2001) Breast Cancer Res Treat 65:101–110

    Article  PubMed  CAS  Google Scholar 

  27. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A et al (2008) Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  28. Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA et al (2005) Oncogene 28:5053–5068

    Article  Google Scholar 

  29. Zhang B, Kirov S, Snoddy J (2005) Nucleic Acids Res 33:W741–W748

    Article  PubMed  CAS  Google Scholar 

  30. Yuryev A, Mulyukov Z, Kotelnikova E, Maslov S, Egorov S et al (2006) BMC Bioinformatics 7:171

    Article  PubMed  Google Scholar 

  31. Sauter ER (2005) Expert Rev Mol Diagn 5:873–881

    Article  PubMed  CAS  Google Scholar 

  32. Mannello F, Medda V, Tonti GA (2009) Expert Rev Proteomics 6:43–60

    Article  PubMed  CAS  Google Scholar 

  33. Lang JE, Kuerer HM (2007) Cancer Control 14:350–359

    PubMed  Google Scholar 

  34. Antill YC, Mitchell G, Johnson SA, Devereux L, Milner A et al (2010) Cancer Epidemiol Biomarkers Prev 19:265–274

    Article  PubMed  CAS  Google Scholar 

  35. Mannello F, Tonti GA, Medda V (2009) Cell Oncol 31:383–392

    PubMed  CAS  Google Scholar 

  36. Li J, Zhao J, Yu X, Lange J, Kuerer H et al (2005) Clin Cancer Res 11:8312–8320

    Article  PubMed  CAS  Google Scholar 

  37. Bhandare D, Nayar R, Bryk M, Hou N, Cohn R et al (2005) Cancer Epidemiol Biomarkers Prev 14:2620–2627

    Article  PubMed  CAS  Google Scholar 

  38. Ellebaek Pedersen M, Qvist N, Bisgaard C, Kelly U, Bernhard A, Moller Pedersen S (2009) Scand J Surg 98:148–154

    PubMed  CAS  Google Scholar 

  39. Setala L, Koskenvuori H, Gudaviciene D, Berg L, Mustonen P (2009) J Reconstr Microsurg 25:521–526

    Article  PubMed  Google Scholar 

  40. Moro C, Pasarica M, Elkind-Hirsch K, Redman LM (2009) J Clin Endocrinol Metab 94:2579–2586

    Article  PubMed  CAS  Google Scholar 

  41. Blakeley JO, Olson J, Grossman SA, He X, Weingart J, Supko JG (2009) J Neurooncol 91:51–58

    Article  PubMed  CAS  Google Scholar 

  42. Yamazaki F (2010) J Appl Physiol 108:328–333

    Article  PubMed  CAS  Google Scholar 

  43. Weld KJ, Evearitt K, Dixon P, Cespedes RD (2009) J Urol 181:878–883

    Article  PubMed  Google Scholar 

  44. Clezardin P, Frappart L, Clerget M, Pechoux C, Delmas PD (1993) Cancer Res 53:1421–1430

    PubMed  CAS  Google Scholar 

  45. Boukerche H, Berthier-Vergnes O, Tabone E, Bailly M, Dore JF, McGregor JL (1995) Br J Cancer 72:108–116

    Article  PubMed  CAS  Google Scholar 

  46. Incardona F, Lewalle JM, Morandi V, Lambert S, Legrand Y et al (1995) Cancer Res 55:166–173

    PubMed  CAS  Google Scholar 

  47. Tuszynski GP, Gasic TB, Rothman VL, Knudsen KA, Gasic GJ (1987) Cancer Res 47:4130–4133

    PubMed  CAS  Google Scholar 

  48. Engbring JA, Hossain R, VanOsdol SJ, Kaplan-Singer B, Wu M et al (2008) Clin Exp Metastasis 25:241–252

    Article  PubMed  CAS  Google Scholar 

  49. Sisci D, Aquila S, Middea E, Gentile M, Maggiolini M et al (2004) Oncogene 23:8920–8930

    Article  PubMed  CAS  Google Scholar 

  50. Goldoni S, Seidler DG, Heath J, Fassan M, Baffa R et al (2008) Am J Pathol 173:844–855

    Article  PubMed  CAS  Google Scholar 

  51. Watkins G, Douglas-Jones A, Bryce R, Mansel RE, Jiang WG (2005) Prostaglandins Leukot Essent Fatty Acids 72:267–272

    Article  PubMed  CAS  Google Scholar 

  52. Gilles C, Bassuk JA, Pulyaeva H, Sage EH, Foidart JM, Thompson EW (1998) Cancer Res 58:5529–5536

    PubMed  CAS  Google Scholar 

  53. Maatta M, Virtanen I, Burgeson R, Autio-Harmainen H (2001) J Histochem Cytochem 49:711–726

    PubMed  CAS  Google Scholar 

  54. Troup S, Njue C, Kliewer EV, Parisien M, Roskelley C et al (2003) Clin Cancer Res 9:207–214

    PubMed  CAS  Google Scholar 

  55. Ohri SS, Vashishta A, Proctor M, Fusek M, Vetvicka V (2008) Int J Oncol 32:491–498

    PubMed  CAS  Google Scholar 

  56. Barthell E, Mylonas I, Shabani N, Kunze S, Kuhn C et al (2007) Anticancer Res 27:2035–2039

    PubMed  CAS  Google Scholar 

  57. Yano M, Hirai K, Naito Z, Yokoyama M, Ishiwata T et al (2001) Surg Today 31:385–389

    Article  PubMed  CAS  Google Scholar 

  58. Bervar A, Zajc I, Sever N, Katunuma N, Sloane BF, Lah TT (2003) Biol Chem 384:447–455

    Article  PubMed  CAS  Google Scholar 

  59. Harbeck N, Kates RE, Gauger K, Willems A, Kiechle M et al (2004) Thromb Haemost 91:450–456

    PubMed  CAS  Google Scholar 

  60. Mendes O, Kim HT, Lungu G, Stoica G (2007) Clin Exp Metastasis 24:341–351

    Article  PubMed  CAS  Google Scholar 

  61. He XX, Chen K, Yang J, Li XY, Gan HY et al (2009) Mol Med 15:1–10

    Article  PubMed  CAS  Google Scholar 

  62. Xu X, Wang B, Ye C, Yao C, Lin Y et al (2008) Cancer Lett 261:147–157

    Article  PubMed  CAS  Google Scholar 

  63. Morand EF (2005) Intern Med J 35:419–426

    Article  PubMed  CAS  Google Scholar 

  64. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Nat Cell Biol 8:1369–1375

    Article  PubMed  CAS  Google Scholar 

  65. Shevde LA, Das S, Clark DW, Samant RS (2010) Curr Mol Med 10:71–81

    Article  PubMed  CAS  Google Scholar 

  66. Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mansson H (2007) Cancer Epidemiol Biomarkers Prev 16:1087–1097

    Article  PubMed  CAS  Google Scholar 

  67. Denhardt DT, Guo X (1993) FASEB J 7:1475–1482

    PubMed  CAS  Google Scholar 

  68. Liaw L, Skinner MP, Raines EW, Ross R, Cheresh DA et al (1995) J Clin Invest 95:713–724

    Article  PubMed  CAS  Google Scholar 

  69. Bayless KJ, Meininger GA, Scholtz JM, Davis GE (1998) J Cell Sci 111(Pt 9):1165–1174

    PubMed  CAS  Google Scholar 

  70. Weber GF, Ashkar S, Glimcher MJ, Cantor H (1996) Science 271:509–512

    Article  PubMed  CAS  Google Scholar 

  71. Mason CK, McFarlane S, Johnston PG, Crowe P, Erwin PJ et al (2008) Mol Cancer Ther 7:548–558

    Article  PubMed  CAS  Google Scholar 

  72. Liu SJ, Zhang DQ, Sui XM, Zhang L, Cai ZW et al (2008) Cell Mol Biol Lett 13:11–19

    Article  PubMed  CAS  Google Scholar 

  73. Thalmann GN, Sikes RA, Devoll RE, Kiefer JA, Markwalder R et al (1999) Clin Cancer Res 5:2271–2277

    PubMed  CAS  Google Scholar 

  74. Kapoor S (2008) J Cancer Res Clin Oncol 134:927–928

    Article  PubMed  CAS  Google Scholar 

  75. Bramwell VH, Doig GS, Tuck AB, Wilson SM, Tonkin KS et al (2006) Clin Cancer Res 12:3337–3343

    Article  PubMed  CAS  Google Scholar 

  76. Decock J, Obermajer N, Vozelj S, Hendrickx W, Paridaens R, Kos J (2008) Int J Biol Markers 23:161–168

    PubMed  CAS  Google Scholar 

  77. Byrne GJ, Hayden KE, McDowell G, Lang H, Kirwan CC et al (2007) Int J Oncol 31:1127–1132

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the NCI Innovative Molecular Analysis Technologies (R21 CA128695), the American Cancer Society Institutional Research Grant (IRG-58-009-48), the Vanderbilt-Ingram Cancer Center (P30 CA068485); the Vanderbilt University Tumor Microenvironment Network (1U54 CA126505), Vanderbilt Breast Cancer SPORE (P50 CA098131), University of Washington’s Proteomics Resource (UWPR95794), and the Robert J. and Helen C. Kleberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baogang J. Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

The list of protein identification in PyVmT mammary tumor microdialysis perfusates. (XLS 204 kb)

Supplementary Table 2

The list of protein identification in normal mammary gland microdialysis perfusates. (XLS 412 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B.J., Yan, W., Jovanovic, B. et al. Microdialysis Combined with Proteomics for Protein Identification in Breast Tumor Microenvironment In Vivo. Cancer Microenvironment 4, 61–71 (2011). https://doi.org/10.1007/s12307-010-0046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-010-0046-3

Keywords

Navigation