Skip to main content

Advertisement

Log in

The Roles of MicroRNAs in the Cancer Invasion-Metastasis Cascade

  • Review Paper
  • Published:
Cancer Microenvironment

Abstract

Cancer metastasis results from a multi-step cascading process that includes: 1) vascularization of the primary tumor; 2) detachment and invasion of cancer cells; 3) intravasation into lymphatic and blood vessels; 4) survival and arrest in the circulation; 5) extravasation into distant organs; and 6) colonization and growth of metastatic tumors. microRNAs (miRNAs) play critical roles in this multi-step process, both promoting and suppressing metastasis. This review updates the progress made in understanding the roles of miRNAs for invasion and metastasis during cancer progression. A specific miRNA signature of cancer metastasis is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    CAS  PubMed  Google Scholar 

  2. Bockhorn M, Jain RK, Munn LL (2007) Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol 8:444–448

    CAS  PubMed  Google Scholar 

  3. Weinberg RA (2007) The biology of cancer, 1st edn. Garland Science, Taylor & Francis Group, New York

    Google Scholar 

  4. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    CAS  PubMed  Google Scholar 

  5. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    CAS  PubMed  Google Scholar 

  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  7. Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27:5959–5974

    CAS  PubMed  Google Scholar 

  8. Zorio E, Medina P, Rueda J et al (2009) Insights into the role of microRNAs in cardiac diseases: from biological signalling to therapeutic targets. Cardiovasc Hematol Agents Med Chem 7:82–90

    CAS  PubMed  Google Scholar 

  9. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    CAS  PubMed  Google Scholar 

  10. Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36

    CAS  PubMed  Google Scholar 

  11. Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108:3646–3653

    CAS  PubMed  Google Scholar 

  12. Spizzo R, Nicoloso MS, Croce CM, Calin GA (2009) SnapShot: MicroRNAs in cancer. Cell 137:586

    CAS  PubMed  Google Scholar 

  13. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    CAS  PubMed  Google Scholar 

  14. Yu F, Yao H, Zhu P et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123

    CAS  PubMed  Google Scholar 

  15. Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69:7495–7498

    CAS  PubMed  Google Scholar 

  16. Bracken CP, Gregory PA, Khew-Goodall Y, Goodall GJ (2009) The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci 66:1682–1699

    CAS  PubMed  Google Scholar 

  17. Ma L, Weinberg RA (2008) Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet 24:448–456

    CAS  PubMed  Google Scholar 

  18. Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA (2009) MicroRNAs-the micro steering wheel of tumour metastases. Nat Rev Cancer 9:293–302

    CAS  PubMed  Google Scholar 

  19. Poliseno L, Tuccoli A, Mariani L et al (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108:3068–3071

    CAS  PubMed  Google Scholar 

  20. le Sage C, Nagel R, Egan DA et al (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708

    PubMed  Google Scholar 

  21. Felli N, Fontana L, Pelosi E et al (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102:18081–18086

    CAS  PubMed  Google Scholar 

  22. Gramantieri L, Fornari F, Callegari E et al (2008) MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 12:2189–2204

    CAS  PubMed  Google Scholar 

  23. Besson A, Hwang HC, Cicero S et al (2007) Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 21:1731–1746

    CAS  PubMed  Google Scholar 

  24. Hua Z, Lv Q, Ye W et al (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE 1:e116

    PubMed  Google Scholar 

  25. Bonci D, Coppola V, Musumeci M et al (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14:1271–1277

    CAS  PubMed  Google Scholar 

  26. Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    CAS  PubMed  Google Scholar 

  27. Roccaro AM, Sacco A, Thompson B et al (2009) MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood 113:6669–6680

    CAS  PubMed  Google Scholar 

  28. Tsai WC, Hsu PW, Lai TC et al (2009) MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49:1571–1582

    CAS  PubMed  Google Scholar 

  29. Fish JE, Santoro MM, Morton SU et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284

    CAS  PubMed  Google Scholar 

  30. Wang S, Aurora AB, Johnson BA et al (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15:261–271

    PubMed  Google Scholar 

  31. Crawford M, Brawner E, Batte K et al (2008) MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun 373:607–612

    CAS  PubMed  Google Scholar 

  32. Guo C, Sah JF, Beard L, Willson JK, Markowitz SD, Guda K (2008) The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 47:939–946

    CAS  PubMed  Google Scholar 

  33. Zhang J, Du YY, Lin YF et al (2008) The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun 377:136–140

    CAS  PubMed  Google Scholar 

  34. Wurdinger T, Tannous BA, Saydam O et al (2008) miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14:382–393

    CAS  PubMed  Google Scholar 

  35. Hayashita Y, Osada H, Tatematsu Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632

    CAS  PubMed  Google Scholar 

  36. Rinaldi A, Poretti G, Kwee I et al (2007) Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma 48:410–412

    PubMed  Google Scholar 

  37. Sylvestre Y, De Guire V, Querido E et al (2007) An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282:2135–2143

    CAS  PubMed  Google Scholar 

  38. Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA 105:19678–19683

    CAS  PubMed  Google Scholar 

  39. Dews M, Homayouni A, Yu D et al (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065

    CAS  PubMed  Google Scholar 

  40. Bonauer A, Carmona G, Iwasaki M, et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009 324:1710–1713

    Google Scholar 

  41. Lee DY, Deng Z, Wang CH, Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 104:20350–20355

    CAS  PubMed  Google Scholar 

  42. Pola R, Ling LE, Silver M et al (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7:706–711

    CAS  PubMed  Google Scholar 

  43. Kulshreshtha R, Ferracin M, Wojcik SE et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867

    CAS  PubMed  Google Scholar 

  44. Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ (2007) High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 6:5

    PubMed  Google Scholar 

  45. Pulkkinen K, Malm T, Turunen M, Koistinaho J, Yla-Herttuala S (2008) Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett 582:2397–2401

    CAS  PubMed  Google Scholar 

  46. Fasanaro P, D’Alessandra Y, Di Stefano V et al (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883

    CAS  PubMed  Google Scholar 

  47. Kong W, Yang H, He L et al (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28:6773–6784

    CAS  PubMed  Google Scholar 

  48. Parmacek MS (2009) MicroRNA-modulated targeting of vascular smooth muscle cells. J Clin Invest 119:2526–2528

    CAS  PubMed  Google Scholar 

  49. Gabriely G, Wurdinger T, Kesari S et al (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380

    CAS  PubMed  Google Scholar 

  50. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    CAS  PubMed  Google Scholar 

  51. Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336

    CAS  PubMed  Google Scholar 

  52. Lu Z, Liu M, Stribinskis V et al (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379

    CAS  PubMed  Google Scholar 

  53. Asangani IA, Rasheed SA, Nikolova DA et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136

    CAS  PubMed  Google Scholar 

  54. Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164–8172

    CAS  PubMed  Google Scholar 

  55. Sayed D, Rane S, Lypowy J et al (2008) MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19:3272–3282

    CAS  PubMed  Google Scholar 

  56. Zhang D, Fan GC, Zhou X et al (2008) Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol 44:281–292

    CAS  PubMed  Google Scholar 

  57. Li T, Li D, Sha J, Sun P, Huang Y (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383:280–285

    CAS  PubMed  Google Scholar 

  58. Li Y, Li W, Yang Y et al (2009) MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res 1286:13–18

    CAS  PubMed  Google Scholar 

  59. Tang YF, Zhang Y, Li XY, Li C, Tian W, Liu L (2009) Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells. OMICS 13:331–336

    CAS  PubMed  Google Scholar 

  60. Wang P, Zou F, Zhang X et al (2009) microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res 69:8157–8165

    CAS  PubMed  Google Scholar 

  61. Xiao B, Guo J, Miao Y et al (2009) Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta 400:97–102

    CAS  PubMed  Google Scholar 

  62. Lin SL, Chiang A, Chang D, Ying SY (2008) Loss of mir-146a function in hormone-refractory prostate cancer. RNA 14:417–424

    CAS  PubMed  Google Scholar 

  63. Marhaba R, Zoller M (2004) CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol 35:211–231

    CAS  PubMed  Google Scholar 

  64. Wang CH, Lee DY, Deng Z et al (2008) MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression. PLoS ONE 3:e2420

    PubMed  Google Scholar 

  65. Huang Q, Gumireddy K, Schrier M et al (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10:202–210

    CAS  PubMed  Google Scholar 

  66. Li Y, Guessous F, Zhang Y et al (2009) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69:7569–7576

    CAS  PubMed  Google Scholar 

  67. Horst D, Kriegl L, Engel J, Kirchner T, Jung A (2009) Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Invest 27:844–850

    PubMed  Google Scholar 

  68. Ji Q, Hao X, Zhang M et al (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4:e6816

    PubMed  Google Scholar 

  69. Lin EH, Jiang Y, Deng Y, Lapsiwala R, Lin T, Blau CA (2008) Cancer stem cells, endothelial progenitors, and mesenchymal stem cells: “seed and soil” theory revisited. Gastrointest Cancer Res 2:169–174

    PubMed  Google Scholar 

  70. Palapattu GS, Wu C, Silvers CR et al (2009) Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate 69:787–798

    CAS  PubMed  Google Scholar 

  71. Takaishi S, Okumura T, Tu S et al (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27:1006–1020

    CAS  PubMed  Google Scholar 

  72. Zhu Z, Hao X, Yan M, et al (2009) Cancer stem/progenitor cells are highly enriched in CD133(+)CD44(+) population in hepatocellular carcinoma. Int J Cancer 2009. doi:10.1002/ijc.24868

  73. Voorhoeve PM, le Sage C, Schrier M et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124:1169–1181

    CAS  PubMed  Google Scholar 

  74. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ (2007) Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 67:7972–7976

    CAS  PubMed  Google Scholar 

  75. Christoffersen NR, Silahtaroglu A, Orom UA, Kauppinen S, Lund AH (2007) miR-200b mediates post-transcriptional repression of ZFHX1B. RNA 13:1172–1178

    CAS  PubMed  Google Scholar 

  76. Gregory PA, Bert AG, Paterson EL et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    CAS  PubMed  Google Scholar 

  77. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914

    CAS  PubMed  Google Scholar 

  78. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907

    CAS  PubMed  Google Scholar 

  79. Burk U, Schubert J, Wellner U et al (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589

    CAS  PubMed  Google Scholar 

  80. Gandellini P, Folini M, Longoni N et al (2009) miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res 69:2287–2295

    CAS  PubMed  Google Scholar 

  81. Gebeshuber CA, Zatloukal K, Martinez J (2009) miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10:400–405

    CAS  PubMed  Google Scholar 

  82. Tavazoie SF, Alarcon C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152

    CAS  PubMed  Google Scholar 

  83. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105:1516–1521

    CAS  PubMed  Google Scholar 

  84. Sengupta S, den Boon JA, Chen IH et al (2008) MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA 105:5874–5878

    CAS  PubMed  Google Scholar 

  85. Valastyan S, Reinhardt F, Benaich N et al (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046

    CAS  PubMed  Google Scholar 

  86. Evangelisti C, Florian MC, Massimi I, et al (2009) MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J 2009 23:4276–4287

    Google Scholar 

  87. Huang ZM, Yang J, Shen XY et al (2009) MicroRNA expression profile in non-cancerous colonic tissue associated with lymph node metastasis of colon cancer. J Dig Dis 10:188–194

    CAS  PubMed  Google Scholar 

  88. Weiss L, Orr FW, Honn KV (1988) Interactions of cancer cells with the microvasculature during metastasis. FASEB J 2:12–21

    CAS  PubMed  Google Scholar 

  89. Kim J, Yu W, Kovalski K, Ossowski L (1998) Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 94:353–362

    CAS  PubMed  Google Scholar 

  90. Salvi A, Sabelli C, Moncini S et al (2009) MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. FEBS J 276:2966–2982

    CAS  PubMed  Google Scholar 

  91. Dangi-Garimella S, Yun J, Eves EM et al (2009) Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 28:347–358

    CAS  PubMed  Google Scholar 

  92. Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP (2008) The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13:221–234

    CAS  PubMed  Google Scholar 

  93. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    CAS  PubMed  Google Scholar 

  94. Repesh LA, Fitzgerald TJ (1984) Interactions of tumor cells with intact capillaries: a model for intravasation. Clin Exp Metastasis 2:139–150

    CAS  PubMed  Google Scholar 

  95. Li C, Feng Y, Coukos G, Zhang L (2009) Therapeutic microRNA strategies in human cancer. AAPS J 2009 11:747–757

    Google Scholar 

  96. Lu LF, Liston A (2009) MicroRNA in the immune system, microRNA as an immune system. Immunology 127:291–298

    CAS  PubMed  Google Scholar 

  97. Rhee KJ, Wu S, Wu X et al (2009) Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun 77:1708–1718

    CAS  PubMed  Google Scholar 

  98. Tili E, Croce CM, Michaille JJ (2009) miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol 28:264–284

    CAS  PubMed  Google Scholar 

  99. Johnnidis JB, Harris MH, Wheeler RT et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451:1125–1129

    CAS  PubMed  Google Scholar 

  100. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486

    CAS  PubMed  Google Scholar 

  101. Dykxhoorn DM, Wu Y, Xie H et al (2009) miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS ONE 4:e7181

    PubMed  Google Scholar 

  102. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890, discussion 1895–1886

    CAS  PubMed  Google Scholar 

  103. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    CAS  PubMed  Google Scholar 

  104. Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23:7274–7282

    CAS  PubMed  Google Scholar 

  105. Welm AL, Kim S, Welm BE, Bishop JM (2005) MET and MYC cooperate in mammary tumorigenesis. Proc Natl Acad Sci USA 102:4324–4329

    CAS  PubMed  Google Scholar 

  106. Bernstein E, Kim SY, Carmell MA et al (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    CAS  PubMed  Google Scholar 

  107. Lujambio A, Calin GA, Villanueva A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105:13556–13561

    CAS  PubMed  Google Scholar 

  108. Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    CAS  PubMed  Google Scholar 

  109. Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579

    CAS  PubMed  Google Scholar 

  110. Garzia L, Andolfo I, Cusanelli E et al (2009) MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS ONE 4:e4998

    PubMed  Google Scholar 

  111. Park IK, Qian D, Kiel M et al (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305

    CAS  PubMed  Google Scholar 

  112. Liu S, Dontu G, Mantle ID et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    CAS  PubMed  Google Scholar 

  113. Godlewski J, Nowicki MO, Bronisz A et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130

    CAS  PubMed  Google Scholar 

  114. Ferretti E, De Smaele E, Miele E et al (2008) Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27:2616–2627

    CAS  PubMed  Google Scholar 

  115. Northcott PA, Fernandez LA, Hagan JP et al (2009) The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res 69:3249–3255

    CAS  PubMed  Google Scholar 

  116. Uziel T, Karginov FV, Xie S et al (2009) The miR-17∼92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 106:2812–2817

    CAS  PubMed  Google Scholar 

  117. Bos PD, Zhang XH, Nadal C et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009

    CAS  PubMed  Google Scholar 

  118. Mueller DW, Rehli M, Bosserhoff AK (2009) miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol 129:1740–1751

    CAS  PubMed  Google Scholar 

  119. Olson P, Lu J, Zhang H et al (2009) MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 23:2152–2165

    CAS  PubMed  Google Scholar 

  120. Baffa R, Fassan M, Volinia S et al (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219:214–221

    CAS  PubMed  Google Scholar 

  121. Budhu A, Jia HL, Forgues M et al (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47:897–907

    CAS  PubMed  Google Scholar 

  122. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    CAS  PubMed  Google Scholar 

  123. Melhuish TA, Gallo CM, Wotton D (2001) TGIF2 interacts with histone deacetylase 1 and represses transcription. J Biol Chem 276:32109–32114

    CAS  PubMed  Google Scholar 

  124. Laios A, O’Toole S, Flavin R et al (2008) Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer 7:35

    PubMed  Google Scholar 

  125. Guo LM, Pu Y, Han Z et al (2009) MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS J 276:5537–5546

    CAS  PubMed  Google Scholar 

  126. Hsu PY, Deatherage DE, Rodriguez BA et al (2009) Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res 69:5936–5945

    CAS  PubMed  Google Scholar 

  127. Bazzoni F, Rossato M, Fabbri M et al (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 106:5282–5287

    CAS  PubMed  Google Scholar 

  128. Foekens JA, Sieuwerts AM, Smid M et al (2008) Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA 105:13021–13026

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Milena Nicoloso for drawing the Fig. 1 and Sherri De Jesus for her technical editing expertise. George A. Calin, a Fellow, is supported by The University of Texas M. D. Anderson Research Trust, The University of Texas System Regents Research Scholar Program, and by the Ladjevardian Regents Research Scholar Fund. This study was supported in part by a grant from the Anne and Henry Zarrow Foundation and by NIH grant 1R01CA135444. The authors acknowledge that all related articles are not cited in this article due to the space limit.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Feng Le or George A. Calin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, XF., Merchant, O., Bast, R.C. et al. The Roles of MicroRNAs in the Cancer Invasion-Metastasis Cascade. Cancer Microenvironment 3, 137–147 (2010). https://doi.org/10.1007/s12307-010-0037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-010-0037-4

Keywords

Navigation