Skip to main content

Advertisement

Log in

Two-stage bone and meniscus allograft and autologous chondrocytes implant for unicompartmental osteoarthritis: midterm results

  • Original Article
  • Published:
MUSCULOSKELETAL SURGERY Aims and scope Submit manuscript

Abstract

Background

We analyzed the clinical and radiographic evolution of patients with knee unicompartmental osteoarthritis and axis alteration and osteochondral lesions in the femoral condyle, treated with tibial plateau and meniscus allograft and cultured autologous chondrocyte implantation in the femur in two steps.

Purpose

To analyze the clinical results with the first patients treated with this two-stage technique to avoid knee prosthesis in patients with unicompartmental osteoarthritis.

Material and methodology

Sixteen patients, average age 56 years, were included in a cohort study. We performed an osteotomy with tibia plateau allograft, including the meniscus. In a second surgery, the chondrocyte fibrin scaffold was placed in the femur. Clinical symptoms and function were measured using KSSR and KOOS scores. Wilcoxon's test was performed to compare the results over the 2-year follow-up period.

Results

Mean KSSR before surgery was 35.69 (SD: 3.75) points, rising to 67 (SD: 15.42) at 3 months, 95.88 at 12 months (SD: 2.68) and 96.31 at 24 months (SD: 2.24). The KOOS before surgery was 65.14 (SD: 16.34), rising to 72.68 after 3 months (SD: 19.15), 76.68 at 12 months (SD: 18.92) and 64.28 at 24 months (SD: 11.79). Four of 5 patients returned to engaging in the activity that they had stopped practicing. Three patients experienced collapse of the tibia allograft, and they needed later a prosthesis.

Conclusions

Simultaneous tibia plateau allograft and autologous chondrocyte implantation in the femur, after correction of the angular deformity, were performed, restoring the anatomy of the medial compartment and knee function in 82% of the patients 2 years after the operation.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhan S, Malhotra R, Kiran EK, Shukla S, Bijjawara M (2005) A comparison of fixed bearing and mobile-bearing total knee arthroplasty at a minimum follow-up of 4.5 years. J Bone Jt Surg (Am) 87-A:2290–2296

    Google Scholar 

  2. Coventry MB (1965) Osteotomy of upper portion of the tibia for degenerative arthritis of the knee a preliminary report. J Bone Jt Surg (Am) 47-A:984–990

    Article  Google Scholar 

  3. Insall J, Shoji H, Mayer V (1974) High tibial osteotomy: a five-year evaluation. J Bone Jt Surg (Am) 56:1397–1405

    Article  CAS  Google Scholar 

  4. Luna-Pizarro D, Moreno-Delgado F, De la Fuente-Zuno JC, Meraz-Lares G (2012) Distal femoral dome varus osteotomy: surgical technique with minimal dissection and external fixation. Knee 19:99–102. https://doi.org/10.1016/j.knee.2011.01.005

    Article  PubMed  Google Scholar 

  5. Gardiner A, Richmond JC (2013) Periarticular osteotomies for degenerative joint disease of the knee. Sports Med Arthrosc 21:38–46. https://doi.org/10.1097/JSA.0b013e31826d2f5d

    Article  PubMed  Google Scholar 

  6. Backstein D, Morag G, Hanna S, Safir O, Gross A (2007) Long-term follow-up of distal femoral varus osteotomy of the knee. J Arthroplasty 22(Suppl 1):2–6

    Article  Google Scholar 

  7. Moseley JB, O’Malley K, Petersen NJ, Menke TJ, Brody BA, Kuykendall DH et al (2002) A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 347:81–88

    Article  Google Scholar 

  8. Shasha N, Krywulak S, Backstein D, Pressman A, Gross AE (2003) Long-term follow-up of fresh tibial osteochondral allografts for failed tibial plateau fractures. J Bone Jt Surg (Am) 85-A(Suppl 2):33–39

    Article  Google Scholar 

  9. Hurley ET, Davey MS, Jamal MS, Manjunath AK, Kingery MT, Alaia MJ et al (2020) High rate of return-to-play following meniscal allograft transplantation. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-05956-z

    Article  PubMed  Google Scholar 

  10. Toanen C, Dhollander A, Bulgheroni P, Filardo G, Zaffagnini S, Spalding T et al (2020) Polyurethane meniscal scaffold for the treatment of partial meniscal deficiency: 5-year follow-up outcomes: a european multicentric study. Am J Sports Med 8:1347–1355. https://doi.org/10.1177/0363546520913528

    Article  Google Scholar 

  11. Searle H, Asopa V, Coleman S, McDermott I (2020) The results of meniscal allograft transplantation surgery: what is success? BMC Musculoskelet Disord 21:159. https://doi.org/10.1186/s12891-020-3165-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Puzzitiello RN, Liu JN, Garcia GH, Redondo ML, Christian DR, Yanke AB et al (2020) Return to sport and outcomes after concomitant lateral meniscal allograft transplant and distal femoral varus osteotomy. Arthroscopy 36:253–260. https://doi.org/10.1016/j.arthro.2019.07.022

    Article  PubMed  Google Scholar 

  13. Rucinski K, Cook JL, Crecelius CR, Stucky R, Stannard JP (2019) Effects of compliance with procedure-specific postoperative rehabilitation protocols on initial outcomes after osteochondral and meniscal allograft transplantation in the knee. Orthop J Sports Med. https://doi.org/10.1177/2325967119884291

    Article  PubMed  PubMed Central  Google Scholar 

  14. Abolghasemian M, León S, Lee PTH, Safir O, Backstein D, Gross AE (2019) Long-term results of treating large posttraumatic tibial plateau lesions with fresh osteochondral allograft transplantation. J Bone Jt Surg Am 101:1102–1108. https://doi.org/10.2106/JBJS.18.00802

    Article  Google Scholar 

  15. Gross AE, Shasha N, Aubin P (2005) Long-term followup of the use of fresh osteochondral allografts for posttraumatic knee defects. Clin Orthop Relat Res 435:79–87

    Article  Google Scholar 

  16. Krettek C, Clausen J, Omar M, Noack S, Neunaber C (2017) Two-stage late reconstruction with a fresh large osteochondral shell allograft transplantation (FLOCSAT) for a large ostechondral defect in a non-union after a lateral tibia plateau fracture 2-year follow up. Injury 48:1309–1318. https://doi.org/10.1016/j.injury.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  17. Bullens PH, Minderhoud NM, de Waal Malefijt MC, Veth RP, Buma P, Schreuder HW (2009) Survival of massive allografts in segmental oncological bone defect reconstructions. Int Orthop 33:757–760. https://doi.org/10.1007/s00264-008-0700-2

    Article  CAS  PubMed  Google Scholar 

  18. Anract P, Coste J, Vastel L, Jeanrot C, Mascard E, Tomeno B (2000) Proximal femoral reconstruction with megaprosthesis versus allograft prosthesis composite: a comparative study of functional results, complications and longevity in 41 cases. Rev Chir Orthop Reparatrice Appar Mot 86:278–288

    CAS  PubMed  Google Scholar 

  19. Felson DT (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133:635–646

    Article  CAS  Google Scholar 

  20. Loughlin J, Dowling B, Mustafa Z, Southam L, Marcelline L, Räinä SS et al (2002) Association of the interleukin-1 gene cluster on chromosome 2q13 with knee osteoarthritis. Arthritis Rheum 46:1519–1527

    Article  CAS  Google Scholar 

  21. Ball S, Amiel D, Williams SK, Tontz W, Chen AC, Sah RL et al (2004) The effects of storage on fresh human osteochondral allografts. Clin Orthop Rel Res 418:246–252

    Article  Google Scholar 

  22. Forriol F, Longo UG, Alvarez E, Campi S, Ripalda P, Rabitti C et al (2011) Scanty integration of osteochondral allografts cryopreserved at low temperatures with dimethyl sulfoxide. Knee Surg Sports Traumatol Arthrosc 19:1184–1191

    Article  Google Scholar 

  23. Gharedaghi M, Taghi Peivandi M, Mazloomi M, Shoorin HR, Hasani M, Seyf P et al (2016) Evaluation of clinical results and complications of structural allograft reconstruction after bone tumor surgery. Arch Bone Jt Surg 4:236–242

    PubMed  PubMed Central  Google Scholar 

  24. Mora G, Alvarez E, Ripalda P, Forriol F (2003) Articular cartilage degeneration after frozen meniscus and achilles tendon allograft transplantation: experimental study in sheep. Arthroscopy 19:833–841

    Article  Google Scholar 

  25. Niinimäki TT, Eskelinen A, Mann BS, Junnila M, Ohtonen P, Leppilahti J (2012) Survivorship of high tibial osteotomy in the treatment of osteoarthritis of the knee: finnish registry-based study of 3195 knees. J Bone Jt Surg (Br) 94-B:1517–1521. https://doi.org/10.1302/0301-620X.94B11.29601

    Article  Google Scholar 

  26. Williams SK, Amiel D, Ball S, Allen RT, Wong VW, Chen AC et al (2003) Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Jt Surg (Am) 85-A:2111–2120

    Article  Google Scholar 

  27. Minas T (2001) Autologous chondrocyte implantation for focal defects of the knee. Clin Orthop Rel Res 391(Suppl):S349–S361

    Article  Google Scholar 

  28. Getgood A, Gelber J, Gortz S, De Young A, Bugbee W (2015) Combined osteochondral allograft and meniscal allograft transplantation: a survivorship analysis. Knee Surg Sports Traumatol Arthrosc 23:946–953. https://doi.org/10.1007/s00167-015-3525-8

    Article  PubMed  Google Scholar 

  29. Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Rel Res 374:212–234

    Article  Google Scholar 

  30. Richardson JB, Caterson B, Evans EH (1999) Repair of human articular cartilage after implantation of autologous chondrocytes. J Bone Jt Surg (Br) 81B:1064–1068

    Article  Google Scholar 

  31. Assenmacher AT, Pareek A, Reardon PJ, Macalena JA, Stuart MJ, Krych AJ (2016) Long-term outcomes after osteochondral allograft: a systematic review at long-term follow-up of 12.3 years. Arthroscopy 32:2160–2168. https://doi.org/10.1016/j.arthro.2016.04.020

    Article  PubMed  Google Scholar 

  32. Johal S, Nakano N, Baxter M, Hujazi I, Pandit H, Khanduja V (2018) Unicompartmental knee arthroplasty: the past, current controversies, and future perspectives. J Knee Surg 31:992–998. https://doi.org/10.1055/s-0038-1625961

    Article  PubMed  Google Scholar 

  33. Chawla H, Ghomrawi HM, van der List JP, Eggman AA, Zuiderbaan HA, Pearle AD (2017) Establishing age-specific cost-effective annual revision rates for unicompartmental knee arthroplasty: a meta-analysis. J Arthroplasty 32:326–335. https://doi.org/10.1016/j.arth.2016.08.019

    Article  PubMed  Google Scholar 

  34. Hamilton TW, Pandit HG, Jenkins C, Mellon SJ, Dodd CAF, Murray DW (2017) Evidence-based indications for mobile-bearing unicompartmental knee arthroplasty in a consecutive cohort of thousand knees. J Arthroplasty 32:1779–1785. https://doi.org/10.1016/j.arth.2016.12.036

    Article  PubMed  Google Scholar 

  35. Tyagi V, Farooq M (2017) Unicompartmental knee arthroplasty: indications, outcomes, and complications. Conn Med 81:87–90

    PubMed  Google Scholar 

  36. Murray DW, Parkinson RW (2018) Usage of unicompartmental knee arthroplasty. Bone Jt J 100-B:432–435. https://doi.org/10.1302/0301-620X.100B4.BJJ-2017-0716.R1

    Article  CAS  Google Scholar 

  37. El-Galaly A, Kappel A, Nielsen PT, Jensen SL (2019) Revision risk for total knee arthroplasty converted from medial unicompartmental knee arthroplasty: comparison with primary and revision arthroplasties, based on mid-term results from the Danish knee arthroplasty registry. J Bone Jt Surg Am 101:1999–2006. https://doi.org/10.2106/JBJS.18.01468

    Article  Google Scholar 

  38. Santoso MB, Wu L (2017) Unicompartmental knee arthroplasty, is it superior to high tibial osteotomy in treating unicompartmental osteoarthritis? a meta-analysis and systemic review. J Orthop Surg Res 12:50. https://doi.org/10.1186/s13018-017-0552-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Forriol.

Ethics declarations

Conflict of interest

The authors have no conflict of interest for this study.

Ethical approval

The study was approved by the Ethical Committee of Hospital Universitario Dr. Jose E. González, Universidad Autónoma de Nuevo León (UANL), Monterrey, N.L., Mexico (approval included). All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Research Committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

The patients clinical study was performed in the Hospital Universitario Dr. Jose E. González, Universidad Autónoma de Nuevo León (UANL), Monterrey, N.L., Mexico. Prof. Forriol was in this university for a long time to prepare the chondrocyte culture and surgical technique details.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Lozano, E., Luna-Pizarro, D., Meraz-Lares, G. et al. Two-stage bone and meniscus allograft and autologous chondrocytes implant for unicompartmental osteoarthritis: midterm results . Musculoskelet Surg 106, 133–143 (2022). https://doi.org/10.1007/s12306-020-00680-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12306-020-00680-w

Keywords

Navigation