Skip to main content

Advertisement

Log in

Genome wide association study of MAGIC population reveals a novel QTL for salinity and sodicity tolerance in rice

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The present study was conducted to identify the novel QTLs controlling salinity and sodicity tolerance using indica MAGIC rice population. Phenotyping was carried out in salinity (EC ~ 10 dS/m) and sodicity (pH ~ 9.8) at the seedling stage. Among 391 lines, 43 and 98 lines were found tolerant and moderately tolerant to salinity. For sodicity condition, 2 and 45 lines were showed tolerance and moderately tolerance at seedling stage. MAGIC population was genotyped with the help of genotyping by sequencing (GBS) and filtered 27041SNPs were used for genome wide marker trait association studies. With respect to salinity tolerance, 25 SNPs were distributed on chromosomes 1, 5, 11 and 12, whereas 18 SNPs were mapped on chromosomes 6, 4 and 11 with LOD value of > 3.25 to sodicity tolerance in rice. The candidate gene analysis detected twelve causal genes including SKC1 gene at Saltol region for salinity and six associated genes for sodic stress tolerance. The significant haplotypes responsible for core histone protein coding gene (LOC_Os12g25120) and three uncharacterized protein coding genes (LOC_Os01g20710, LOC_Os01g20870 and LOC_Os12g22020) were identified under saline stress. Likewise, five significant haplotypes coding for ribose 5-phosphate isomerise (LOC_Os04g24140), aspartyl protease (LOC_Os06g15760), aluminum-activated malate transporter (LOC_Os06g15779), OsFBX421-Fbox domain containing protein (LOC_Os11g32940) and one uncharacterized protein (LOC_Os11g32930) were detected for sodic stress tolerance. The identified novel SNPs could be the potential candidates for functional characterization. These candidate genes aid to further understanding of genetic mechanism on salinity and sodicity stress tolerance in rice. The tolerant line could be used in future breeding programme to enhance the salinity and sodicity tolerance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam R, Sazzadur Rahman M, Seraj Z, Thomson M, Ismail A, Tumimbang-Raiz E, Gregorio G (2011) Investigation of seedling-stage salinity tolerance QTLs using backcross lines derived from Oryzasativa L. Pokkali. Plant Breed 130(4):430–437

    Article  CAS  Google Scholar 

  • Ali S, Gautam R, Mahajan R, Krishnamurthy S, Sharma S, Singh R et al (2013) Stress indices and selectable traits in SALTOL QTL introgressed rice genotypes for reproductive stage tolerance to sodicity and salinity stresses. Field Crop Res 154:65–73

    Article  Google Scholar 

  • Arshadullah M., Rasheed, M. and Zaidi.S.A.R. (2011) Salt tolerance of different rice cultivars for their salt tolerance under salt-affected soils.International Research Journal of Agricultural Science and Soil Science 1:183–184.

  • Babu N, Krishnan S, Vinod K, Krishnamurthy S, Singh V, Singh M et al. (2017) Marker Aided Incorporation of Saltol, a Major QTL Associated with Seedling Stage Salt Tolerance, into Oryzasativa ‘Pusa Basmati 1121’. Frontiers in Plant Science 8.

  • Bandillo N, Raghavan C, Muyco P, Sevilla M, Lobina I, Dilla-Ermita C et al (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhandari A, Jayaswal P, Yadav N, Singh R, Singh Y, Singh B et al. (2019) Genomics-assisted backcross breeding for infusing climate resilience in high-yielding green revolution varieties of rice. Indian Journal of Genetics and Plant Breeding (The) 79.

  • Biatczyk J, Lechowski Z, Libik A (1994) Growth of tomato seedlings under different HCO-3concentration in the medium. J Plant Nutr 17:801–816

    Article  Google Scholar 

  • Bonilla P, Mackell D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryzasativa L.) using recombinant inbred lines. Philippine Agricultural Scientist 65(1):68–76

    Google Scholar 

  • Bradbury P, Zhang Z, Kroon D, Casstevens T, Ramdoss Y, Buckler E (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brautigan D, Rengasamy P, Chittleborough D (2012) Aluminium speciation and phytotoxicity in alkaline soils. Plant Soil 360:187–196

    Article  CAS  Google Scholar 

  • Cao J (2012) The pectin Lyases in arabidopsis thaliana: evolution, selection and expression profiles. PLoS ONE 7(10):e46944. https://doi.org/10.1371/journal.pone.0046944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  PubMed  CAS  Google Scholar 

  • Chapagain S, Park YC, Jang CS (2017) Functional diversity of RING E3 ligases of major cereal crops in response to abiotic stresses. J Crop Sci Biotech 20(5):351–357

    Article  Google Scholar 

  • Chini A, Grant J, Seki M et al (2004) Drought tolerance established by enhanced expression of CC-NBS-LRR gene ADR1 requires salicylic acid, EDS1, and ABI1. Plant J 38:810–822

    Article  CAS  PubMed  Google Scholar 

  • Claes B, Dekeyser R, Villarroel R, den Bulcke M, Bauw G, Montagu M et al (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2:19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141:1199–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit S, Swamy B, Vikram P, Ahmed H, Sta Cruz M, Amante M et al (2012) Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought severities. Theor Appl Genet 125:155–169

    Article  PubMed  Google Scholar 

  • Elshire R, Glaubitz J, Sun Q, Poland J, Kawamoto K, Buckler ES et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:19379

    Article  CAS  Google Scholar 

  • FAO (2013) Global cereals forecast to increase by 7 percent in 2013. http://wwwfao.org/asiapacific/rap/home/news/detail/en/?newsuid=180032.

  • Fujita M, Fujita Y, Noutoshi Y et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. CurrOpin Plant Biol 9:436–442

    Google Scholar 

  • Ganie SA, Karmakar J, Roychowdhury R, Mondal TK, Dey N (2014) Assessment of genetic diversity in salt-tolerant rice and its wild relatives for ten SSR loci and one allele mining primer of salT gene located on 1st chromosome. Plant Syst Evol 300:1741–1747

    Article  Google Scholar 

  • Geetha S, Vasuki A, Selvam P, Saraswathi R, Krishnamurthy S, Palanichamy M et al (2017) Development of sodicity tolerant rice varieties through marker assisted backcross breeding. Electron J Plant Breed 8:1013

    Article  Google Scholar 

  • Głowacki S, Macioszek VK, Kononowicz AK (2011) R proteins as fundamentals of plant innate immunity. Cell MolBiolLett 16:1–24

    Google Scholar 

  • Gregorio GB (1997) Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP). Ph.D Thesis, University of the Philippines Los Banõs, Laguna

  • Guo R, Zhao J, Wang XX et al (2015) Constitutive expression of a grape aspartic protease gene in transgenic arabidopsis confers osmotic stress tolerance. Plant Cell Tissue Organ Cult 121:275–287

    Article  CAS  Google Scholar 

  • Heenan D, Lewin L, McCaffery D (1988) Salinity tolerance in rice varieties at different growth stages. Animal Product Science 28:343–349

    Article  Google Scholar 

  • Hoekenga O, Maron L, Pineros M, Cancado G, Shaff J, Kobayashi Y et al (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminium tolerance in Arabidopsis. Proc Natl Acad Sci 103:9738–9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q et al (2011) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Hayashi N, Matsushita A et al (2013) Blast resistance of CC-NBS-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. ProcNatlAcadSci USA 110:9577–9582. https://doi.org/10.1073/pnas.1222155110

    Article  CAS  Google Scholar 

  • Jain M, Nijhawan A, Rita-Arora R et al (2007) F-Box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143(4):1467–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal S, Gautam R, Singh R, Krishnamurthy S, Ali S, Sakthivel K et al (2019) Harmonizing technological advances in phenomics and genomics for enhanced salt tolerance in rice from a practical Perspective. Rice 12:89. https://doi.org/10.1186/s12284-019-0347-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansen R, Jannink J, Beavis W (2003) Mapping quantitative trait loci in plant breeding populations. Crop Sci 43:829–834

    CAS  Google Scholar 

  • Jin H, Plaha P, Park J, Hong C, Lee I, Yang Z et al (2006) Comparative EST profiles of leaf and root of Leymuschinensis, a xerophilous grass adapted to high pH sodic soil. Plant Sci 170:1081–1086

    Article  CAS  Google Scholar 

  • Kim Y, Tsuda K, Igarashi D et al (2014) Signaling mechanisms underlying the robustness and tunability of the plant immune network. Cell Host Microbe 15:84–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:1

    Article  CAS  Google Scholar 

  • Krishnamurthy S, Sharma S, Sharma D, Singh Y, Mishra V et al (2016a) Analysis of stability and G × E interaction of rice genotypes across saline and alkaline environments in India. Cereal Res Commun 44:349–360

    Article  CAS  Google Scholar 

  • Krishnamurthy S, Gautam R, Sharma P, Sharma D (2016b) Effect of different salt stresses on agro-morphological traits and utilisation of salt stress indices for reproductive stage salt tolerance in rice. Field Crop Res 190:26–33

    Article  Google Scholar 

  • Krishnamurthy S, Pundir P, Warriach A, Rathor S, Lokeshkumar B, Singh N et al (2021) IntrogressedSaltol QTL lines improve the salinity tolerance in rice at seedling stage. Front Plant Sci 11:833

    Article  Google Scholar 

  • Krishnamurthy S, Sharma P, Sharma D, Ravikiran K, Singh Y, Mishra V, et al (2017) Identification of mega-environments and rice genotypes for general and specific adaptation to saline and alkaline stresses in India. Sci Rep 7

  • Kumar V, Singh A, Mithra S, Krishnamurthy S, Parida S, Jain S et al (2015) Genome-wide association mapping of salinity tolerance in rice (Oryzasativa). DNA Res 22:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang N, Yanagihara S, Buu BC (2000) Quantitative trait loci for salt tolerance in rice via molecular markers. Omonrice 8:37–48

    Google Scholar 

  • De Leon TB, Steven Linscombe S, Subudhi PK (2016) Molecular dissection of seedling salinity tolerance in rice (Oryzasativa L) using a high-density GBS-Based SNP linkage map. Rice 9(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Yan S, Zhao L et al (2014) Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol 14:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Pang S, Lu Z et al (2020) Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants (basel) 9(11):1515

    Article  CAS  Google Scholar 

  • Liu S, Gao H, Wu X, Fang Q, Chen L, Zhao F et al (2016) Isolation and characterization of an aluminium-resistant mutant in rice. Rice 9(1):60

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12(5):7–63

    Google Scholar 

  • Mazumder A, Rohilla M, Bisht D, Krishnamurthy S, Barman M, Sarma R et al (2020) Identification and mapping of quantitative trait loci (QTL) and epistatic QTL for salinity tolerance at seedling stage in traditional aromatic short grain rice landrace Kolajoha (Oryzasativa L.) of Assam, India. Euphytica 216:75

    Article  CAS  Google Scholar 

  • McWilliam JR (1986) The national and international importance of drought and salinity effects on agricultural production. Funct Plant Biol 13:1–13

    Article  Google Scholar 

  • Millar A, Rathjen A, Cooper D (2007) Genetic variation for subsoil toxicities in high pH soils. In: Buck HT, Nisi JE, Salomön N (eds) Wheat production in stressed environments. Springer, pp 395–401

    Chapter  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Negrao S, Courtois B, Ahmadi N, Abreu I, SaiboNand OMM (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30:329–377

    Article  CAS  Google Scholar 

  • Pan Y, Chen L, Yang X, et al (2020) Mapping quantitative trait loci for cold tolerance in rice under germination stage by whole genome resequencing and analysis of candidate genes. Guangxi Academy AgriSci https://orcid.org/0000-0003-0782-6158

  • Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M et al (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryzasativa L.). Mol Genet Genomics 284:121–136

    Article  CAS  PubMed  Google Scholar 

  • Ponce K, Zhang Y, Guo L et al (2020) Genome-wide association study of grain size traits in indica rice multiparent advanced generation Intercross (MAGIC) population. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00395

    Article  PubMed  PubMed Central  Google Scholar 

  • Pundir P, Sharma P, Krishnamurthy S, Devi A, Warraich A, Sharma A (2016) Utilization of salt stress indices and genetic variability in F2 population (PS5×CSR10) of rice for salinity tolerance at reproductive stage. J Soil Salin Water Quality 8:14–24

    Google Scholar 

  • Raghavan C, Mauleon R, Lacorte V, Jubay M, Zaw H, Bonifacio J, Singh RK, Huang BE, Leung H (2017) Approaches in characterizing genetic structure and mapping in a rice multiparental population. G3: Genes Genomes Genetics 7(6):1721–1730. https://doi.org/10.1534/g3.117.042101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Z, Gao J, Li L, Cai X, Huang W, Chao D et al (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653. https://doi.org/10.1111/j.1365-313X.2003.01991.x

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Flowers T (2010) The physiology and molecular biology of the effects of salinity on rice. In: Pessarakli M (ed) Handbook of plant and crop stress. Handbook of Plant and Crop Stress, 3rd edn. Taylor and Francis, Florida, pp 901–942

    Google Scholar 

  • Singh R, Redoña E, Refuerzo L (2010) Varietal improvement for abiotic stress tolerance in crop plants, special reference to salinity in rice. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants, physiological, molecular and genomic foundation. Springer, New York, pp 387–415

    Google Scholar 

  • Singh Y, Singh D, Sharma S, Krishnamurthy S (2013) Evaluation of rice genotypes for yield, physiological and biological traits in sodic soil. J Soil Salin Water Quality 5:40–49

    Google Scholar 

  • Singh Y, Singh D, Krishnamurthy S (2014) Grouping of advanced rice breeding lines based on grain yield and Na: K ratio under alkaline conditions. J Soil Salin Water Quality. 6:21–27

    Google Scholar 

  • Singh R, Singh Y, Xalaxo S, Verulkar S, Yadav N, Singh S et al (2016) From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci 242:278–287

    Article  CAS  PubMed  Google Scholar 

  • Storey J, Tibshirani R (2003) Statistical significance for genome wide studies. Proc Natl Acad Sci 100:9440–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tack J, Singh R, Nalley L, Viraktamath B, Krishnamurthy S, Lyman N et al (2015) High vapor pressure deficit drives salt-stress-induced rice yield losses in India. Glob Change Biol 21:1668–1678

    Article  Google Scholar 

  • Thomson M, De Ocampo M, Egdane J, Rahman M, Sajise A, Adorada D et al (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Article  Google Scholar 

  • Tiwari S, Krishnamurthy S, Kumar V, Singh B, Rao A, Mithra S et al (2016) Mapping QTLs for salt tolerance in rice (Oryzasativa L.) by bulked segregant analysis of recombinant inbred lines using 50K SNP Chip. PLoS ONE 11:e0153610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuan V, Fukuta Y, Mand Ban T (2000) Mapping quantitative trait loci for salinity tolerance in rice. Omonrice 8:27–35

    Google Scholar 

  • Turner S (2014) qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv. https://doi.org/10.1101/005165

    Article  Google Scholar 

  • Visscher P, Brown M, McCarthy M, Yang J (2012) Five years of GWAS discovery. Am J Human Genet 90:7–24

    Article  CAS  Google Scholar 

  • Warraich A, Krishnamurthy S, Sooch B, Vinaykumar N, Dushyanthkumar B, Bose J et al (2020) Rice GWAS reveals key genomic regions essential for salinity tolerance at reproductive stage. Acta Physiol Plant 42:134

    Article  CAS  Google Scholar 

  • Xiong Y, DeFraia C, Williams D, Zhang X, Mou Z (2009) Deficiency in a cytosolic ribose-5-phosphate isomerase causes chloroplast dysfunction, late flowering and premature cell death in Arabidopsis. Physiol Plant 137:249–263

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Kumar A, Grover N, Ellur R, Krishnan S, Bollinedi H et al (2020) Marker aided introgression of “Saltol”, a major QTL for seedling stage salinity tolerance into an elite Basmati rice variety “Pusa Basmati 1509.” Sci Rep 10(1):13877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Forno D, Cock J, Gomez K (1976) Laboratory manual for physiological studies of rice. IRRI, Las Banos

    Google Scholar 

  • Zeng L, Shannon MC (2000a) Salinity effects on seedling growth and yield components of rice. Crop Sci 40:996–1003

    Article  Google Scholar 

  • Zeng L, Shannon MC (2000b) Effects of salinity on grain yield and yield components of rice at different seeding densities. Agron J 92:418–423

    Article  Google Scholar 

  • Zhang Z, Ersoz E, Lai C, Todhunter R, Tiwari H, Gore M et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhao J, Li Y et al (2010) Transcriptome analysis highlights defense and signaling pathways mediated by rice pi21 gene with partial resistance to magnaportheoryzae. Front Plant Sci 7:1834

    Google Scholar 

Download references

Acknowledgements

We thank Indian Council of Agricultural Research (ICAR), India and International Rice Research Institute (IRRI), Philippines for funding and sparing breeding materials, the GWAS, MAGIC team at IRRI for sparing GBS data and advice in data analysis and Central Soil Salinity Research Institute Karnal (PME Cell reference no Research Article/95/2019).

Author information

Authors and Affiliations

Authors

Contributions

SLK, PCS, RKS, HL design the experiment, edit the manuscript, SLK, ASW conducted experiments, draft the manuscript and analyze the data, DD, SR NMV, ASW, BML performed the analysis of data, wrote and revised the manuscript.

Corresponding authors

Correspondence to S. L. Krishnamurthy, P. C. Sharma or R. K. Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 381 kb)

Supplementary file2 (XLSX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthy, S.L., Sharma, P.C., Dewan, D. et al. Genome wide association study of MAGIC population reveals a novel QTL for salinity and sodicity tolerance in rice. Physiol Mol Biol Plants 28, 819–835 (2022). https://doi.org/10.1007/s12298-022-01174-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01174-8

Keywords

Navigation