Skip to main content
Log in

Improvement of millets in the post-genomic era

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Millets are food and nutrient security crops in the semi-arid tropics of developing countries. Crop improvement using modern tools is one of the priority areas of research in millets. The whole-genome sequence (WGS) of millets provides new insight into understanding and studying the genes, genome organization and genomic-assisted improvement of millets. The WGS of millets helps to carry out genome-wide comparison and co-linearity studies among millets and other cereal crops. This approach might lead to the identification of genes underlying biotic and abiotic stress tolerance in millets. The available genome sequence of millets can be used for SNP identification, allele discovery, association and linkage mapping, identification of valuable candidate genes, and marker-assisted breeding (MAB) programs. Next generation sequencing (NGS) technology provides opportunities for genome-assisted breeding (GAB) through genomic selection (GS) and genome-wide association studies (GAWS) for crop improvement. Clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) genome editing (GE) system provides new opportunities for millet improvement. In this review, we discuss the details on the WGS available for millets and highlight the importance of utilizing such resources in the post-genomic era for millet improvement. We also draw inroads on the utilization of various approaches such as GS, GWAS, functional genomics, gene validation and GE for millet improvement. This review might be helpful for understanding the developments in the post-genomic era of millet improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alagarasan G, Dubey M, Aswathy KS, Chandel G (2017) Genome wide identification of orthologous ZIP genes associated with zinc and iron translocation in Setaria italica. Front Plant Sci 8:775

    Article  PubMed  PubMed Central  Google Scholar 

  • Arya L, Chauhan D, Yadav Y, and Verma M (2014) Transferability of simple sequence repeat (SSR) markers developed in finger millet, and pearl millet to kodo millet and barnyard millet. Eds Johri AK. and Mishra GC. In innovative approach in stem cell research, cancer biology and applied biotechnology, New Delhi: Excellent Publishing House, pp 60–64

  • Babu BK, Agrawal PK, Pandey D, Jaiswal JP, Kumar A (2014a) Association mapping of agro-morphological characters among the global collection of finger millet genotypes using genomic SSR markers. Mol Biol Rep 41:5287–5297

    Article  Google Scholar 

  • Babu BK, Dinesh P, Agrawal PK, Sood S, Chandrashekara C, Bhatt JC, Kumar A (2014b) Comparative genomics and association mapping approaches for blast resistant genes in finger millet using SSRs. PLoS ONE 9:e99182

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay T, Muthamilarasan M, Prasad M (2017) Millets for next generation climate-smart agriculture. Front Plant Sci 8:1266

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett SH (1983) Crop mimicry in weeds. Econ Bot 37:255–282

    Article  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    Article  CAS  PubMed  Google Scholar 

  • Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Prabhu K (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Fron Genet 7:221

    Google Scholar 

  • Boukail S, Macharia M, Miculan M, Masoni A, Calamai A, Palchetti E, Dell’Acqua M (2021) Genome wide association study of agronomic and seed traits in a world collection of proso millet (Panicum miliaceum L.). BMC Plant Biol 21:1–12

    Article  Google Scholar 

  • Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22(8):2537–2544

  • Cao X, Hu L, Chen X, Zhang R, Cheng D, Li H, Xu Z, Li L, Zhou Y, Liu A (2019) Genome-wide analysis and identification of the low potassium stress responsive gene SiMYB3 in foxtail millet (Setaria italica L.). BMC Genomics 20:1–13

    Article  Google Scholar 

  • Ceasar S, Maharajan T, Krishna TPA, Ramakrishnan M, Victor Roch G, Satish L, Ignacimuthu S (2018) Finger millet [Eleusine coracana (L.) Gaertn.] improvement: current status and future interventions of whole genome sequence. Front Plant Sci 9:1054

    Article  Google Scholar 

  • Ceasar SA (2019) Genome-wide Identification and in-silico analysis of PHT1 family genes and proteins in Setaria viridis: The best model to study nutrient transport in millets. Plant Genome 12:180019

    Article  Google Scholar 

  • Ceasar SA (2021) Genome-editing in millets: current knowledge and future perspectives. Mol Biol Rep 26:1–9

    Google Scholar 

  • Ceasar SA, Baker A, Ignacimuthu S (2017) Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel Agrobacterium-mediated transformation procedure. Sci Rep 7:1–16

    Article  CAS  Google Scholar 

  • Ceasar SA, Hodge A, Baker A, Baldwin SA (2014) Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS ONE 9:e108459

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceasar SA, Ramakrishnan M, Vinod K, Roch GV, Upadhyaya HD, Baker A, Ignacimuthu S (2020) Phenotypic responses of foxtail millet (Setaria italica) genotypes to phosphate supply under greenhouse and natural field conditions. PLoS ONE 15:e0233896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das I, Rakshit S (2016) Millets, their importance, and production constraints. biotic stress resistance in millets. Elsevier, pp 3–19

  • David RH, Ramakrishnan M, Maharajan T, BarathiKannan K, Babu GA, Daniel MA, Agastian P, Caesar SA, Ignacimuthu S (2021) Mining QTL and genes for root traits and biochemical parameters under vegetative drought in South Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn) by association mapping and in silico comparative genomics. Biocatal Agric Biotechnol 32:101935

    Article  Google Scholar 

  • Deng F, Yamaji N, Xia J, Ma JF (2013) A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant Physiol 163:1353–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:2–9

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Dong K, Wang X, Liu T, He J, Ren R, Zhang L, Liu R, Liu X, Li M, Huang M (2016) A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Geno 17:1–12

    Google Scholar 

  • Feng ZJ, Xu ZS, Sun J, Li LC, Chen M, Yang GX, He GY, Ma YZ (2016) Investigation of the ASR family in foxtail millet and the role of ASR1 in drought/oxidative stress tolerance. Plant Cell Rep 35:115–128

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Dou Y, Li M, Qu P, He Z, Liu Y, Xu Z, Chen J, Chen M, Ma Y (2019) SiMYB3 in foxtail millet (Setaria italica) confers tolerance to low-nitrogen stress by regulating root growth in transgenic plants. Int J Mol Sci 20:5741

    Article  CAS  PubMed Central  Google Scholar 

  • Guo L, Qiu J, Ye C, Jin G, Mao L, Zhang H, Yang X, Peng Q, Wang Y, Jia L (2017) Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nat Commun 8:1–10

    Article  Google Scholar 

  • Gupta AK, Gaur VS, Gupta S, Kumar A (2013) Nitrate signals determine the sensing of nitrogen through differential expression of genes involved in nitrogen uptake and assimilation in finger millet. Funct Integr Genomics 13:179–190

    Article  PubMed  Google Scholar 

  • Hatakeyama M, Aluri S, Balachadran MT, Sivarajan SR, Patrignani A, Grüter S, Poveda L, Shimizu-Inatsugi R, Baeten J, Francoijs KJ (2017) Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res 25:39–47

    Article  PubMed Central  Google Scholar 

  • Hash CT, Sharma A, Kolesnikova Allen MA, SD S, Thakur RP, AG BR, Witcombe JR (2006) Teamwork delivers biotechnology products to Indian small-holder crop-livestock producers: Pearl millet hybrid “HHB 67 Improved” enters seed delivery pipeline. J SAT Agri Res 2:1–4

    Google Scholar 

  • Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Senthil-Kumar M, Udayakumar M (2014) Stable expression of mtlD gene imparts multiple stress tolerance in finger millet. PLoS ONE 9:e99110

    Article  PubMed  PubMed Central  Google Scholar 

  • Heffner EL, Jannink JL, Iwata H, Souza E, Sorrells ME (2011a) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51:2597–2606

    Article  Google Scholar 

  • Heffner EL, Jannink JL, Sorrells ME (2011b) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Gen 4:65–75

    Article  Google Scholar 

  • Hillary VE, Ceasar SA (2019) Application of CRISPR/Cas9 genome editing system in cereal crops. Open Biotechnol J 13:173–179

    Article  CAS  Google Scholar 

  • Hittalmani S, Mahesh H, Shirke MD, Biradar H, Uday G, Aruna Y, Lohithaswa H, Mohanrao A (2017) Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics 18:1–16

    Article  Google Scholar 

  • Jadhav P, Salvi P, Bhatt M, Lohani P (2018) Expression of ECMYB transcription factor gene under different abiotic stress conditions in Eleusine coracana. Int J Environ Agric Biotech 11:799–806

    Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaiswal V, Bandyopadhyay T, Gahlaut V, Gupta S, Dhaka A, Ramchiary N, Prasad M (2019a) Genome-wide association study (GWAS) delineates genomic loci for ten nutritional elements in foxtail millet (Setaria italica L.). J Cereal Sci 85:48–55

    Article  CAS  Google Scholar 

  • Jaiswal V, Gupta S, Gahlaut V, Muthamilarasan M, Bandyopadhyay T, Ram.chiary N, Prasad M (2019b) Genome-wide association study of major agronomic traits in foxtail millet (Setaria italica L.) using ddRAD sequencing. Sci Rep 9:1–11

    Article  Google Scholar 

  • Jha DK, Chanwala J, Sandeep IS, Dey N (2021) Comprehensive identification and expression analysis of GRAS gene family under abiotic stress and phytohormone treatments in pearl millet. Funct Plant Biol 48:1039–1052

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961

    Article  CAS  PubMed  Google Scholar 

  • Jogaiah S, Sharathchandra R, Raj N, Vedamurthy A, Shetty HS (2014) Development of SCAR marker associated with downy mildew disease resistance in pearl millet (Pennisetum glaucum L.). Mol Biol Rep 41:7815–7824

    Article  CAS  PubMed  Google Scholar 

  • Jones E, Breese W, Liu C, Singh S, Shaw D, Witcombe J (2002) Mapping quantitative trait loci for resistance to downy mildew in pearl millet: Field and glasshouse screens detect the same QTL. Crop Sci 42:1316–1323

    Article  CAS  Google Scholar 

  • Kannan B, Senapathy S, Bhasker Raj AG, Chandra S, Muthiah A, Dhanapal AP, Hash CT (2014) Association analysis of SSR markers with phenology, grain, and stover-yield related traits in pearl millet (Pennisetum glaucum (L.) R. Br.). Sci World J 1–14

  • Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:1–10

    Article  Google Scholar 

  • Krishna TPA, Ceasar S, Maharajan T, Ramakrishnan M, Duraipandiyan V, Al-Dhabi N, Ignacimuthu S (2017) Improving the zinc-use efficiency in plants: a review. SABRAO J Breed Genet 49:1–22

    Google Scholar 

  • Krishna TPA, Maharajan T, David RHA, Ramakrishnan M, Ceasar SA, Duraipandiyan V, Roch GV, Ignacimuthu S (2018) Microsatellite markers of finger millet (Eleusine coracana (L.) Gaertn) and foxtail millet (Setaria italica (L.) Beauv) provide resources for cross-genome transferability and genetic diversity analyses in other millets. Biocatal Agric Biotechnol 16:493–501

    Article  Google Scholar 

  • Krishna TPA, Maharajan T, Ignacimuthu S, Ceasar SA (2021) Genomic-assisted breeding in finger millet (Eleusine Coracana (L.) Gaertn.) for abiotic stress tolerance. Genomic designing for abiotic stress resistant cereal crops, pp 291–317

  • Krishna TPA, Maharajan T, Victor Roch G, Ignacimuthu S, Antony Ceasar S (2020a) Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front Plant Sci 11:662

    Article  Google Scholar 

  • Krishna TPA, Theivanayagam M, Roch GV, Duraipandiyan V, Ignacimuthu S (2020b) Microsatellite marker: Importance and implications of cross-genome analysis for finger millet (Eleusine coracana (L.) Gaertn). Curr Biotechnol 9:160–170

    Article  CAS  Google Scholar 

  • Krishna TPA, Maharajan T, Ceasar SA (2022) The role of membrane transporters in the biofortification of zinc and iron in plants. Biol Trace Elem Res 3:1–15

    Google Scholar 

  • Kumar A, Babu BK, Yadav S, Agrawal PK (2016a) Allele mining for resistance gene analogs (RGAs) in crop plants: A special emphasis on blast resistance in finger millet (Eleusine coracana L.). Indian J Genet Plant Breed 76:1–9

    Article  CAS  Google Scholar 

  • Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, Srivastava RK (2016b) Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 7:1636

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar VV, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV, Chinnusamy V (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Phy Mol Biol Plants 26:1099–1110

    Article  Google Scholar 

  • Kummari D, Palakolanu SR, Kavi Kishor P, Shankhapal AR, Vadez V, Sharma KK, Bhatnagar Mathur P (2021) Functional characterization of late embryogenesis abundant (LEA) genes and promoters in pearl millet (Pennisetum glaucum L.) for abiotic stress tolerance. Physiol Plant 29:1–8

    Google Scholar 

  • Lata C, Sahu PP, Prasad M (2010) Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochem Biophys Res Commun 393:720–727

    Article  CAS  PubMed  Google Scholar 

  • Li G, Wu S, Cai L, Wang Q, Zhao X, Wu C (2013) Identification and mRNA expression profile of glutamate receptor-like gene in quinclorac-resistant and susceptible Echinochloa crus-galli. Gene 531:489–495

    Article  CAS  PubMed  Google Scholar 

  • Li J, Dong Y, Li C, Pan Y, Yu J (2017) SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants. Front Plant Sci 7:2053

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Chen M, Wang E, Hu L, Hawkesford MJ, Zhong L, Chen Z, Xu Z, Li L, Zhou Y (2016) Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice. BMC Genomics 17:1–16

    Article  Google Scholar 

  • Li WW, Chen M, Zhong L, Liu JM, Xu ZS, Li LC, Zhou Y-B, Guo CH, Ma YZ (2015) Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis. Biochem Biophys Res Commun 468:800–806

    Article  CAS  PubMed  Google Scholar 

  • Li ZJ, Jia GQ, Li XY, Li YC, Hui ZH, Sha TA, Zhang S, Li YD, Shang ZL, Diao XM (2021) Identification of blast-resistance loci through genome-wide association analysis in foxtail millet (Setaria italica (L.) Beauv.). J Integr Agric 20:2056–2064

    Article  CAS  Google Scholar 

  • Liang Z, Gupta SK, Yeh CT, Zhang Y, Ngu DW, Kumar R et al (2018) Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. G3 8:2513–2522

  • Liao S, Qin X, Luo L, Han Y, Wang X, Usman B, Li R (2019) CRISPR/Cas9-induced mutagenesis of semi-rolled leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.). Agronomy 9:728

    Article  CAS  Google Scholar 

  • Lin CS, Hsu CT, Yang LH, Lee LY, Fu JY, Cheng QW, Wu FH, Hsiao HCW, Zhang Y, Zhang R (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16:1295–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot 63:3899–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, He J, Dong K, Wang X, Wang W, Yang P, Ren R, Zhang L, Zhang Z, Yang T (2020) QTL mapping of yield component traits on bin map generated from resequencing a RIL population of foxtail millet (Setaria italica). BMC Genet 21:1–3

    Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Maharajan T, Antony Ceasar S, Krishna TPA, Ignacimuthu S (2021) Finger millet [Eleusine coracana (L.) Gaertn]: An orphan crop with a potential to alleviate the calcium deficiency in the semi-arid tropics of Asia and Africa. Front Sustain Food Syst 5:684447

    Article  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S (2019) Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets. Planta 250:1433–1448

    Article  CAS  PubMed  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA, Ramakrishnan M, Duraipandiyan V, Naif Abdulla AD, Ignacimuthu S (2018) Utilization of molecular markers for improving the phosphorus efficiency in crop plants. Plant Breed 137:10–26

    Article  CAS  Google Scholar 

  • Mamidi S, Healey A, Huang P, Grimwood J, Jenkins J, Barry K, Sreedasyam A, Shu S, Lovell JT, Feldman M (2020) A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nat Biotechnol 38:1203–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto T, Wu J, Kanamori H, Katayose Y, Fujisawa M, Namiki N, Mizuno H, Yamamoto K, Antonio BA, Baba T (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Meena RP, Vishwakarma H, Ghosh G, Gaikwad K, Chellapilla TS, Singh MP, Padaria JC (2020) Novel ASR isolated from drought stress responsive SSH library in pearl millet confers multiple abiotic stress tolerance in PgASR3 transgenic Arabidopsis. Plant Physiol Biochem 156:7–19

    Article  CAS  PubMed  Google Scholar 

  • Mirza N, Taj G, Arora S, Kumar A (2014) Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in fnger millet (Eleusine coracana L. Gaertn.). Gene 2:171–179

    Article  Google Scholar 

  • Mohanty I, Gangasagar P, Rath S (2013) Amplification and molecular characterization of DREB1A transcription factor fragment from finger millet [(Eleusine coracana (L.) Gaertn]. J Agric Sci 5:37–49

    Google Scholar 

  • Nadeem F, Ahmad Z, Wang R, Han J, Shen Q, Chang F, Diao X, Zhang F, Li X (2018) Foxtail millet [Setaria italica (L.) Beauv.] grown under low nitrogen shows a smaller root system, enhanced biomass accumulation, and nitrate transporter expression. Front Plant Sci 9:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagarjuna K, Parvathi M, Sajeevan R, Pruthvi V, Mamrutha H, Nataraja K (2016) Full-length cloning and characterization of abiotic stress responsive CIPK31-like gene from finger millet, a drought-tolerant crop. Currt Sci 111:890–894

    Article  CAS  Google Scholar 

  • Nepolean T, Blummel M, Raj AB, Rajaram V, Senthilvel S, Hash CT (2006) QTLs controlling yield and stover quality traits in pearl millet. J Agric Res 2:1–4

    Google Scholar 

  • Ogata T, Ishizaki T, Fujita M, Fujita Y (2020) CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PLoS ONE 15:e0243376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T (2006) The rice annotation project database (RAP-DB): hub for Oryza sativa ssp. Japonica genome information. Nucleic Acids Res 34:D741–D744

    Article  CAS  PubMed  Google Scholar 

  • Onuh AF, Miwa K (2021) Regulation, diversity and evolution of boron transporters in plants. Plant Cell Physiol 62:590–599

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvathi M, Nataraja KN (2017) Discovery of stress responsive TATA-box binding protein associated Factor6 (TAF6) from finger millet (Eleusine coracana (L.) Gaertn). J Plant Biol 60:335–342

    Article  CAS  Google Scholar 

  • Parvathi M, Nataraja KN, Yashoda B, Ramegowda H, Mamrutha H, Rama N (2013) Expression analysis of stress responsive pathway genes linked to drought hardiness in an adapted crop, finger millet (Eleusine coracana). J Plant Biochem Biotechno 22:193–201

    Article  CAS  Google Scholar 

  • Parvathi MS, Nataraja KN, Reddy YN, Naika MB, Gowda MC (2019) Transcriptome analysis of finger millet (Eleusine coracana (L.) Gaertn.) reveals unique drought responsive genes. J Gene 98:1–12

    CAS  Google Scholar 

  • Pudake RN, Mehta CM, Mohanta TK, Sharma S, Varma A, Sharma AK (2017) Expression of four phosphate transporter genes from Finger millet (Eleusine coracana L.) in response to mycorrhizal colonization and Pi stress. 3 Biotech 7:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Pujar M, Gangaprasad S, Govindaraj M, Gangurde SS, Kanatti A, Kudapa H (2020) Genome-wide association study uncovers genomic regions associated with grain iron, zinc and protein content in pearl millet. Sci Rep 10:1–15

    Article  Google Scholar 

  • Puranik S, Jha S, Srivastava PS, Sreenivasulu N, Prasad M (2011) Comparative transcriptome analysis of contrasting foxtail millet cultivars in response to short-term salinity stress. J Plant Physiol 168:280–287

    Article  CAS  PubMed  Google Scholar 

  • Ragaee S, Abdel-Aal E-SM, Noaman M (2006) Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem 98:32–38

    Article  CAS  Google Scholar 

  • Rahman H, Jagadeeshselvam N, Valarmathi R, Sachin B, Sasikala R, Senthil N, Sudhakar D, Robin S, Muthurajan R (2014) Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant Mol Biol 85:485–503

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna C, Singh S, Raghavendrarao S, Padaria JC, Mohanty S, Sharma TR, Solanke AU (2018) The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses. Sci Rep 8:1–14

    Article  CAS  Google Scholar 

  • Ramakrishnan M, Antony Ceasar S, Duraipandiyan V, Vinod K, Kalpana K, Al-Dhabi N, Ignacimuthu S (2016) Tracing QTLs for leaf blast resistance and agronomic performance of finger millet (Eleusine coracana (L.) Gaertn.) genotypes through association mapping and in silico comparative genomics analyses. PLoS ONE 11:e0159264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan M, Ceasar SA, Vinod K, Duraipandiyan V, Ajeesh Krishna T, Upadhyaya HD, Al-Dhabi N, Ignacimuthu S (2017) Identification of putative QTLs for seedling stage phosphorus starvation response in finger millet (Eleusine coracana L. Gaertn.) by association mapping and cross species synteny analysis. PLoS ONE 12:e0183261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramegowda V, Gill US, Sivalingam PN, Gupta A, Gupta C, Govind G, Nataraja KN, Pereira A, Udayakumar M, Mysore KS (2017) GBF3 transcription factor imparts drought tolerance in Arabidopsis thaliana. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  • Roch GV, Maharajan T, Krishna TPA, Ignacimuthu S, Ceasar SA (2020) Expression of PHT1 family transporter genes contributes for low phosphate stress tolerance in foxtail millet (Setaria italica) genotypes. Planta 252:1–9

    Article  Google Scholar 

  • Saha D, Gowda MC, Arya L, Verma M, Bansal KC (2016) Genetic and genomic resources of small millets. Crit Rev Plant Sci 35:56–79

    Article  CAS  Google Scholar 

  • Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS (2012) Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol 12:1–3

    Article  Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Tiwari A, Sood S, Jamra G, Singh N, Meher PK, Kumar A (2018) Genome wide association mapping of agro-morphological traits among a diverse collection of finger millet (Eleusine coracana L.) genotypes using SNP markers. PLoS ONE 13:e0199444

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Shinde H, Dudhate A, Tsugama D, Gupta SK, Liu S, Takano T (2019) Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis. Plant Physiol Biochem 135:546–553

    Article  CAS  PubMed  Google Scholar 

  • Shivhare R, Asif MH, Lata C (2020) Comparative transcriptome analysis reveals the genes and pathways involved in terminal drought tolerance in pearl millet. Plant Mole Biol 103:639–652

    Article  CAS  Google Scholar 

  • Singh RK, Shweta S, Muthamilarasan M, Rani R, Prasad M (2019) Study on aquaporins of Setaria italica suggests the involvement of SiPIP3; 1 and SiSIP1; 1 in abiotic stress response. Funct Integr Genomics 19:587–596

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Singh VK, Raghavendrarao S, Phanindra MLV, Raman KV, Solanke AU, Kumar PA, Sharma TR (2015) Expression of finger millet EcDehydrin7 in transgenic tobacco confers tolerance to drought stress. Appl Biochem Biotechnol 177:207–216

    Article  CAS  PubMed  Google Scholar 

  • Singhal T, Satyavathi CT, Singh SP, Kumar A, Sankar M, Bhardwaj C, Singh N (2021) Multi-Environment Quantitative Trait Loci Mapping for Grain Iron and Zinc Content Using Bi-parental Recombinant Inbred Line Mapping Population in Pearl Millet. Front Plant Sci 12:744

    Article  Google Scholar 

  • Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E et al (2015) Genomic selection and association mapping in rice (Oryza sativa): effect oftrait genetic architecture, training population composition, marker numberand statistical model on accuracy of rice genomic selection in elite, tropical ricebreeding lines. PloS Genet 11:e1004982

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava RK, Singh RB, Pujarula VL, Bollam S, Pusuluri M, Chellapilla TS, Yadav RS, Gupta R (2020) Genome-wide association studies and genomic selection in pearl millet: Advances and prospects. Front Genet 10:1389

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun M, Huang D, Zhang A, Khan I, Yan H, Wang X, Zhang X, Zhang J, Huang L (2020) Transcriptome analysis of heat stress and drought stress in pearl millet based on Pacbio full-length transcriptome sequencing. BMC Plant Bio 20:1–5

    CAS  Google Scholar 

  • Swaminaidu N, Ghosh S, Mallikarjuna K (2015) Millets: The miracle grain. Int J Pharma Bio Sci 6:440–446

    CAS  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457

    Article  CAS  PubMed  Google Scholar 

  • Tharanya M, Kholova J, Sivasakthi K, Seghal D, Hash CT, Raj B, Srivastava RK, Baddam R, Thirunalasundari T, Yadav R, Vadez V (2018) Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine-mapping population of pearl millet (Pennisetum glaucum LR Br.). Theor Appl Genet 131:1509–1529

    Article  CAS  PubMed  Google Scholar 

  • Tiwari A, Sharma D, Sood S, Jaiswal JP, Pachauri SP, Ramteke PW, Kumar A (2020) Genome-wide association mapping for seed protein content in finger millet (Eleusine coracana) global collection through genotyping by sequencing. J Cereal Sci 91:102888

    Article  CAS  Google Scholar 

  • Usman B, Nawaz G, Zhao N, Liao S, Liu Y, Li R (2020) Precise editing of the ospyl9 gene by rna-guided cas9 nuclease confers enhanced drought tolerance and grain yield in rice (Oryza sativa l.) by regulating circadian rhythm and abiotic stress responsive proteins. Int J Mol Sci 21:7854

    Article  CAS  PubMed Central  Google Scholar 

  • Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vetriventhan M, Azevedo VC, Upadhyaya H, Nirmalakumari A, Kane-Potaka J, Anitha S, Ceasar SA, Muthamilarasan M, Bhat BV, Hariprasanna K (2020) Genetic and genomic resources, and breeding for accelerating improvement of small millets: current status and future interventions. Nucleus 1–23

  • Wang H, Tang S, Zhi H, Xing L, Zhang H, Tang C, Wang E, Zhao M, Jia G, Feng B (2021) The boron transporter SiBOR1 functions in cell wall integrity, cellular homeostasis, and panicle development in foxtail millet. Crop J 1–12

  • Wang J, Wang Z, Du X, Yang H, Han F, Han Y, Yuan F, Zhang L, Peng S, Guo E (2017) A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS ONE 12:e0179717

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Li P, Li C, Pan Y, Jiang X, Zhu D, Zhao Q, Yu J (2014a) SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Bio 14:1–16

    Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014b) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechno 132:947–951

    Article  Google Scholar 

  • Wang WC, Lin TC, Kieber J, Tsai YC (2019) Response regulators 9 and 10 negatively regulate salinity tolerance in rice. Plant Cell Physiol 60:2549–2563

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zhong Z, Wang X, Han X, Yu D, Wang C, Zhang Y (2020) Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice. Int J Mol Sci 21:2288

    Article  CAS  PubMed Central  Google Scholar 

  • Wanga MA, Shimelis H, Mashilo J, Laing MD (2021) Opportunities and challenges of speed breeding: A review. Plant Breed 140:185–194

    Article  Google Scholar 

  • Wu D, Liang Z, Yan T, Xu Y, Xuan L, Tang J, Zhou G, Lohwasser U, Hua S, Wang H (2019) Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol Plant 12:30–43

    Article  CAS  PubMed  Google Scholar 

  • Xie LN, Ming C, Min DH, Lu F, Xu ZS, Zhou YB, Xu DB, Li LC, Zhang XH (2017) The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway. J Integr Agric 16:559–571

    Article  CAS  Google Scholar 

  • Yadav CB, Muthamilarasan M, Dangi A, Shweta S, Prasad M (2016) Comprehensive analysis of SET domain gene family in foxtail millet identifies the putative role of SiSET14 in abiotic stress tolerance. Sci Rep 6:1–13

    Article  Google Scholar 

  • Yadav CB, Tokas J, Yadav D, Winters A, Singh RB, Yadav R, Gangashetty PI, Srivastava RK, Yadav RS (2021) Identifying anti-oxidant biosynthesis genes in pearl millet [Pennisetum glaucum (L.) R. Br.] Using genome-wide association analysis. Front Plant Sci 12:870

    Article  Google Scholar 

  • Yadav R, Bidinger F, Hash C, Yadav Y, Yadav O, Bhatnagar S, Howarth C, Yang R, Chen M, Sun J-C, Yu Y, Min D-H, Chen J, Xu Z-S, Zhou Y-B, Ma Y-Z, Zhang X-H (2003) (2019) Genome-wide analysis of LIM family genes in foxtail millet (Setaria italica L.) and characterization of the role of SiWLIM2b in drought tolerance. Int J Mol Res 20:1303

  • Yang X, Yu XY, Li YF (2013) De novo assembly and characterization of the barnyardgrass (Echinochloa crus-galli) transcriptome using next-generation pyrosequencing. PLoS ONE 8:e69168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeshvekar RK, Nitnavare RB, Chakradhar T, Bhatnagar-Mathur P, Reddy MK, Reddy PS (2017) Molecular characterization and expression analysis of pearl millet plasma membrane proteolipid 3 (Pmp3) genes in response to abiotic stress conditions. Plant Gene 10:37–44

    Article  CAS  Google Scholar 

  • Yu TF, Zhao WY, Fu JD, Liu YW, Chen M, Zhou YB, Ma YZ, Xu ZS, Xi YJ (2018) Genome-wide analysis of CDPK family in foxtail millet and determination of SiCDPK24 functions in drought stress. Front Plant Sci 9:651

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue J, Li C, Liu Y, Yu J (2014) A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet (Setaria italica) promotes high salt tolerance in transgenic Arabidopsis. PLoS ONE 9:e100772

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xiao W, Yu W, Yao L, Li L, Wei J, Li R (2018) Foxtail millet SiHAK1 excites extreme high-affinity K + uptake to maintain K+ homeostasis under low K+ or salt stress. Plant Cell Rep 37:1533–1546

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Luo L (2019) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39:1–10

    Article  Google Scholar 

  • Zhi H, He Q, Tang S, Yang J, Zhang W, Liu H, Jia Y, Jia G, Zhang A, Li Y, Guo E (2021) Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (Setaria italica). Theor Appl Genet 3:1–4

    Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:632–643

    Article  CAS  PubMed  Google Scholar 

  • Zou C, Li L, Miki D, Li D, Tang Q, Xiao L, Rajput S, Deng P, Peng L, Jia W (2019) The genome of broomcorn millet. Nat Commun 10:1–11

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank Rajagri College of Social Sciences, Kochi, Kerala for providing the research facilities and support.

Funding

This work was fnancially supported by Rajagiri College of Social Sciences (Autonomous), Kerala, India, under Seed Money for Faculty Minor Research.

Author information

Authors and Affiliations

Authors

Contributions

TPAK, TM and SAC conceptualized and wrote the manuscript. SAC critically revised the manuscript for publication.

Corresponding author

Correspondence to S. Antony Ceasar.

Ethics declarations

Conflicts of interests

The authors declare no conflict of interest. Improvement of millets in the post-genomic era.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajeesh Krishna, T.P., Maharajan, T. & Ceasar, S.A. Improvement of millets in the post-genomic era. Physiol Mol Biol Plants 28, 669–685 (2022). https://doi.org/10.1007/s12298-022-01158-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01158-8

Keywords

Navigation