Skip to main content
Log in

Growth, physiological and proteomic responses in field grown wheat varieties exposed to elevated CO2 under high ambient ozone

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The present study investigated growth, biochemical, physiological, yield and proteomic changes in 3 wheat varieties exposed to elevated CO2 (515 ppm) in a background of high ambient ozone in field. Ethylenediurea (EDU) was used as antiozonant. Average ozone concentration was 59 ppb and was sufficient enough to exert phytotoxic effects. Elevated carbon dioxide (eCO2) and EDU application individually or in combination negated the adverse effects of ozone by modulating antioxidants and antioxidative enzymes. Differential leaf proteomics revealed that at vegetative stage major changes in protein abundance were due to EDU treatment (47, 52 and 41 proteins in PBW-343, LOK1 and HD-2967, respectively). Combined treatment of eCO2 and EDU was more responsible for changes in 37 proteins during flowering stage of PBW-343 and LOK1. Functional categorization revealed more than 60% differentially abundant protein collectively belonging to carbon metabolism, protein synthesis assembly and degradation and photosynthesis. At both the growth stages, LOK1 was more responsive to eCO2 and combined treatment (eCO2 + EDU). HD-2967 was more positively responsive to EDU and combined treatment. eCO2 in combination of EDU protected these varieties against high ambient O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ainsworth EA (2017) Understanding and improving global crop response to ozone pollution. Plant J 90:886–897

    CAS  PubMed  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell Environ 30:258–270

    CAS  Google Scholar 

  • Akcay N, Bor M, Karabudak T, Ozdemir F, Turkan I (2012) Contribution of Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. J Plant Physiol 169(5):452–458

    CAS  PubMed  Google Scholar 

  • Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719

    CAS  PubMed  Google Scholar 

  • Aranjuelo I, Cabrera-Bosquet L, Morcuende R, Avice JC, Nogues S, Araus JL, Martinez-Carrasco R, Perez P (2011) Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? J Exp Bot 62(11):3957–3969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Astegno A, Capitani G, Dominici P (1854) Functional roles of the hexamer organization of plant glutamate decarboxylase. Biochim Biophys Acta Proteins Proteomics 9:1229–1237

    Google Scholar 

  • Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45:2297–2309

    CAS  Google Scholar 

  • Banerjee J, Maiti MK (2010) Functional role of rice germin-like protein1 in regulation of plant height and disease resistance. Biochem Biophys Res Commun 394(1):178–183

    CAS  PubMed  Google Scholar 

  • Bernt E, Bergmeyer HU (1974) Glutathione. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 4. Verlag Chemie/Academic Press Inc, Weinhein/New York, London, p 1643

    Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161(2):559–566

    CAS  PubMed  Google Scholar 

  • Bilski P, Li MY, Ehrenshaft M, Daub ME, Chignell CF (2000) Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem Photobiol 71(2):129–134

    CAS  PubMed  Google Scholar 

  • Bohler S, Bagard M, Oufir M, Planchon S, Hoffmann L, Jolivet Y, Hausman JF, Dizengremel P, Renaut J (2007) A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 7(10):1584–1599

    CAS  PubMed  Google Scholar 

  • Booker FL, Fiscus EL (2005) The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO2 in soybean. J Exp Bot 56(418):2139–2151

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Chen G, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Chen H, Xiong L (2005) Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses. Plant J 44(3):396–408

    CAS  PubMed  Google Scholar 

  • Choi G, Yi H, Lee J, Kwon YK, Soh MS, Shin B, Luka Z, Hahn TR, Song PS (1999) Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401(6753):610

    CAS  PubMed  Google Scholar 

  • Cross JM, von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, Palacios N, Stitt M (2006) Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiol 142(4):1574–1588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Front Environ Sci 2:70

    Google Scholar 

  • De Leeuw F, van Zantvoort E (1997) Mapping of exceedances of ozone critical levels for crops and forest trees in the Netherlands: preliminary results. Environ Pollut 96:89–98

    PubMed  Google Scholar 

  • Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 15(4):1129–1159

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiMario RJ, Clayton H, Mukherjee A, Ludwig M, Moroney JV (2017) Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Mol Plant 10(1):30–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong QL, Liu DD, An XH, Hu DG, Yao YX, Hao YJ (2011) MdVHP1 encodes an apple vacuolar H+-PPase and enhances stress tolerance in transgenic apple callus and tomato. J Plant Physiol 168(17):2124–2133

    CAS  PubMed  Google Scholar 

  • Emberson LD, Buker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayashi K, Oanh NTK, Quadir QF, Wahid A (2009) A comparison of North American and Asian exposure e response data for ozone effects on crop yields. Atmos Environ 43:1945–1953

    CAS  Google Scholar 

  • Farfan-Vignolo ER, Asard H (2012) Effect of elevated CO2 and temperature on the oxidative stress response to drought in Loliumperenne L. and Medicago sativa L. Plant Physiol Biochem 59:55–62

    CAS  PubMed  Google Scholar 

  • Feng Z, Kobaysahi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biol 14:2696–2708

    Google Scholar 

  • Feng Z, Wang S, Szantoi Z, Chen S, Wang X (2010) Protection of plants from ambient ozone by applications of ethylenediurea (EDU): a meta-analytic review. Environ Pollut 158:3236–3242

    CAS  PubMed  Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant, Cell Environ 28:997–1011

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11(4):861–905

    CAS  PubMed  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinyl pyridine. Anal Biochem 106:207–212

    CAS  PubMed  Google Scholar 

  • Gupta SK, Sharma M, Majumder B, Maurya VK, Lohani M, Deeba F, Pandey V (2018) Impact of Ethylene diurea (EDU) on growth, yield and proteome of two winter wheat varieties under high ambient ozone phytotoxicity. Chemosphere 196:161–173

    CAS  PubMed  Google Scholar 

  • Hassan I (2006) Physiological and biochemical response of potato (Solanum tuberosum L. cv. Kara) to O3 and antioxidant chemicals: possible roles of antioxidant enzymes. Ann Appl Biol 148:197–206

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem and Biophys 125(1):189–198

    CAS  Google Scholar 

  • Hendrey GR, Lewin KF, Nagy J (1993) Free air carbon dioxide enrichment: development, progress, results. Vegetatio 104(1):17–31

    Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1996) Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant 98(4):685–692

    CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri Rk, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change IPCC, Geneva, Switzerland, 151 pp

  • Jablonski LM, Wang X, Curtis PS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156(1):9–26

    Google Scholar 

  • Kirchsteiger K, Ferrandez J, Pascual MB, Gonzalez M, Cejudo FJ (2012) NADPH thioredoxin reductase C is localized in plastids of photosynthetic and non-photosynthetic tissues and is involved in lateral root formation in Arabidopsis. Plant Cell 24(4):1534–1548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozuleva M, Goss T, Twachtmann M, Rudi K, Trapka J, Selinski J, Ivanov B, Garapathi P, Steinhoff HJ, Hase T, Scheibe R (2016) Ferredoxin: NADP (H) oxidoreductase abundance and location influences redox poise and stress tolerance. Plant Physiol 172(3):1480–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Agrawal M, Tiwari S (2013) Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: pigments, metabolites, antioxidants, growth and yield. Environ Pollut 174:279–288

    CAS  PubMed  Google Scholar 

  • Kumari S, Agrawal M, Singh A (2015) Effects of ambient and elevated CO2 and ozone on physiological characteristics, antioxidative defence system and metabolites of potato in relation to ozone flux. Environ Expe Bot 109:276–287

    CAS  Google Scholar 

  • Lee K, Kang H (2016) Emerging roles of RNA-binding proteins in plant growth, development, and stress responses. Mol Cells 39(3):179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Zhang Y, Wu X, Liu Y (2018) Drought stress impact on leaf proteome variations of faba bean (Vicia faba L.) in the Qinghai-Tibet Plateau of China. 3 Biotech 8(2):110

    PubMed  PubMed Central  Google Scholar 

  • Liebthal M, Maynard D, Dietz KJ (2018) Peroxiredoxins and redox signaling in plants. Antioxid Redox Signal 28(7):609–624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long SP, Ainsworth EA, Leakey AD, Nosberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    CAS  PubMed  Google Scholar 

  • Lu W, Tang X, Huo Y, Xu R, Qi S, Huang J, Zheng C, Wu CA (2012) Identification and characterization of fructose 1, 6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene 503(1):65–74

    CAS  PubMed  Google Scholar 

  • Manning WJ, Paoletti E, Sandermann J Jr, Ernst D (2011) Ethylenediurea (EDU): a research tool for assessment and verification of the effects of ground level ozone on plants under natural conditions. Environ Pollut 159:3283–3293

    CAS  PubMed  Google Scholar 

  • McLeod AR, Long SP (1999) Free-air carbon dioxide enrichment (FACE) in global change research: a review. Adv Ecol Res 28:1–56

    CAS  Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B (2011) Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bent grass expressing an ipt gene for cytokinin synthesis. J Exp Bot 62(15):5311–5333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra AK, Agrawal SB (2014) Cultivar specific response of CO2 fertilization on two tropical mung bean (Vigna radiata L.) cultivars: ROS generation, antioxidant status, physiology, growth, yield and seed quality. J Agron Crop Sci 20:273–289

    Google Scholar 

  • Mishra AK, Rai R, Agrawal SB (2013) Differential response of dwarf and tall tropical wheat cultivars to elevated ozone with and without carbon dioxide enrichment: growth, yield and grain quality. Field Crops Res 145:21–32

    Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci 100(1):358–363

    CAS  PubMed  Google Scholar 

  • Morgan JA, Lecain DR, Mosier AR, Milchunas DG (2001) Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Global Change Biol 7(4):451–466

    Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant, Cell Environ 26:1317–1328

    CAS  Google Scholar 

  • Naranjo B, Mignee C, Krieger Liszkay A, Hornero Mendez D, Gallardo Guerrero L, Cejudo FJ, Lindahl M (2016) The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Plant, Cell Environ 39(4):804–822

    CAS  Google Scholar 

  • Nguyen QD, Rezessy-Szabo JM, Claeyssens M, Stals I, Hoschke A (2002) Purification and characterisation of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzyme Microb Technol 31(3):345–352

    CAS  Google Scholar 

  • Nikkanen L, Toivola J, Rintamaki E (2016) Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. Plant, Cell Environ 39(8):1691–1705

    CAS  Google Scholar 

  • Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T, Shigeoka S (2016) Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Biosci Biotechnol Biochem 80(5):870–877

    CAS  PubMed  Google Scholar 

  • Oksanen E, Pandey V, Pandey AK, Keski-Saari S, Kontunen-Soppela S, Sharma C (2013) Impacts of increasing ozone on Indian plants. Environ Pollut 177:189–200

    CAS  PubMed  Google Scholar 

  • Pandey AK, Majumder B, Keski-Saari S, Kontunen-Soppela S, Pandey V, Oksanen E (2014) Differences in responses of two mustard cultivars to ethylenediurea (EDU) at high ambient ozone concentrations in India. Agric Ecosyst Environ 196:158–166

    CAS  Google Scholar 

  • Pandey AK, Majumder B, Keski-Saari S, Kontunen-Soppela S, Mishra A, Sahu N, Pandey V, Oksanen E (2015) Searching for common responsive parameters for ozone tolerance in 18 rice cultivars in India: results from ethylenediurea studies. Sci Total Environ 1(532):230–238

    Google Scholar 

  • Pandey V, Sharma M, Deeba F, Maurya VK, Gupta SK, Singh SP, Mishra A, Nautiyal CS (2017) Impact of elevated CO2 on wheat growth and yield under free air CO2 enrichment. Am J Clim Change 6(04):573

    Google Scholar 

  • Piikki K, DeTemmerman L, Ojanpera K, Danielsson H, Pleijel H (2008) The grain quality of spring wheat (Triticum aestivum L.) in relation to elevated ozone uptake and carbon dioxide exposure. Eur J Agron 28(3):245–254

    CAS  Google Scholar 

  • Porter MA, Grodzinski B (1984) Acclimation to high CO2 in bean: carbonic anhydrase and ribulose bisphosphate carboxylase. Plant Physiol 74(2):413–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandalio LM, Rodriguez-Serrano M, Romero-Puertas MC, del Rio LA (2013) Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules. Subcell Biochem 69:231–255

    CAS  PubMed  Google Scholar 

  • Sarkar A, Singh AA, Agrawal SB, Ahmad A, Rai SP (2015) Cultivar specific variations in antioxidative defence system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotoxicol Environl Saf 115:101–111

    CAS  Google Scholar 

  • Sharma M, Gupta SK, Majumder B, Maurya VK, Deeba F, Alam A, Pandey V (2017) Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. J Proteomics 163:28–51

    CAS  PubMed  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 2006:2856–2860

    Google Scholar 

  • Singh A, Agrawal MN (2015) Effects of ambient and elevated CO2 on growth, chlorophyll fluorescence, photosynthetic pigments, antioxidants, and secondary metabolites of Catharanthus roseus (L.) G Don. grown under three different soil N levels. Environ Sci Pollut Res 22:3936–3946

    CAS  Google Scholar 

  • Singh S, Agrawal SB, Agrawal M (2009) Differential protection of ethylenediurea (EDU) against ambient ozone for five cultivars of tropical wheat. Environ Pollut 157:2359–2367

    CAS  PubMed  Google Scholar 

  • Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci 99(3):1724–1729

    CAS  PubMed  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    CAS  PubMed  Google Scholar 

  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Komatsu S (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8(1):19

    PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Agrawal M (2009) Protection of palak (Beta vulgaris L. var Allgreen) plants from ozone injury by ethylenediurea (EDU): roles of biochemical and physiological variations in alleviating the adverse impacts. Chemosphere 75:1492–1499

    CAS  PubMed  Google Scholar 

  • Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442

    CAS  Google Scholar 

  • Wang D, Heckathorn SA, Wang X, Philpott SM (2012) A meta analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169:1–13

    PubMed  Google Scholar 

  • Whelan WJ (1955) Starch, glycogen, fructosans and similar polysaccharides. In: Modern methods of plant analysis/ModerneMethoden der Pflanzenanalyse, Springer, Berlin, pp 145–196

  • Wustman BA, Oksanen E, Karnosky DF, Noormets A, Isebrands JG, Pregitzer KS, Hendrey GR, Sober J, Podila GK (2001) Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3? Environ Pollut 115(3):473–481

    CAS  PubMed  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57(3):508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Li R, Fan N, Yang Z, Huang B (2017) Metabolic pathways involved in carbon dioxide enhanced heat tolerance in Bermuda grass. Front Plant Sci 8:1506

    PubMed  PubMed Central  Google Scholar 

  • Zhang RB, Hu HJ, Zheng ZHAO, Yang DD, Zhu XK, Guo WS, Zhu JG, Kobayashi K (2013) Effects of elevated ozone concentration on starch and starch synthesis enzymes of Yangmai 16 under fully open-air field conditions. J Integr Agric 12(12):2157–2163

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Director, CSIR-NBRI, Lucknow, India for providing all necessary facilities. Funding for this work was provided by Council of Scientific & Industrial Research (CSIR), New Delhi, India (Project Nos. PSC 112 and BSC 109).

Author information

Authors and Affiliations

Authors

Contributions

VP, NP and VKM designed the experiment. VKM, BM and MS did yield and physiological work. VKM and BM did the enzymatic and biochemical analysis. VK, SKG, MS and FD did proteomic work. VKM and VP analysed the data. VKM, NP, FD and VP wrote the paper. All the authors approved the paper.

Corresponding author

Correspondence to Vivek Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, V.K., Gupta, S.K., Sharma, M. et al. Growth, physiological and proteomic responses in field grown wheat varieties exposed to elevated CO2 under high ambient ozone. Physiol Mol Biol Plants 26, 1437–1461 (2020). https://doi.org/10.1007/s12298-020-00828-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00828-9

Keywords

Navigation